Cerebellar cortex oscil. robustness from Golgi cell gap jncs (Simoes de Souza and De Schutter 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:139656
" ... Previous one-dimensional network modeling of the cerebellar granular layer has been successfully linked with a range of cerebellar cortex oscillations observed in vivo. However, the recent discovery of gap junctions between Golgi cells (GoCs), which may cause oscillations by themselves, has raised the question of how gap-junction coupling affects GoC and granular-layer oscillations. To investigate this question, we developed a novel two-dimensional computational model of the GoC-granule cell (GC) circuit with and without gap junctions between GoCs. ..."
Reference:
1 . Simões de Souza F, De Schutter E (2011) Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations Neural Systems & Circuits 1:7:1-19
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum interneuron granule GLU cell; Cerebellum golgi cell;
Channel(s):
Gap Junctions: Gap junctions;
Receptor(s): GabaA; AMPA; NMDA;
Gene(s): HCN1; HCN2;
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Oscillations; Synchronization; Action Potentials;
Implementer(s): Simoes-de-Souza, Fabio [fabio.souza at ufabc.edu.br];
Search NeuronDB for information about:  Cerebellum interneuron granule GLU cell; GabaA; AMPA; NMDA;
/
network
README.txt
gap.mod
Golgi_BK.mod *
Golgi_Ca_HVA.mod *
Golgi_Ca_LVA.mod *
Golgi_CALC.mod *
Golgi_CALC_ca2.mod *
Golgi_hcn1.mod *
Golgi_hcn2.mod *
Golgi_KA.mod *
Golgi_KM.mod *
Golgi_KV.mod *
Golgi_lkg.mod *
Golgi_Na.mod *
Golgi_NaP.mod *
Golgi_NaR.mod *
Golgi_SK2.mod *
GRC_CA.mod *
GRC_CALC.mod *
GRC_KA.mod *
GRC_KCA.mod *
GRC_KIR.mod *
GRC_KM.mod *
GRC_KV.mod *
GRC_LKG1.mod *
GRC_LKG2.mod *
GRC_NA.mod *
K_conc.mod *
Na_conc.mod *
Golgi_ComPanel.hoc *
Golgi_template.hoc
granule_template.hoc
MF_template.hoc
mosinit.hoc
network.hoc
utils.hoc *
                            
TITLE Cerebellum Golgi Cell Model

COMMENT
        Na transient channel
	Gutfreund parametrization
   
	Author: E.DAngelo, T.Nieus, A. Fontana
	Last revised: 8.5.2000
ENDCOMMENT
 
NEURON { 
	SUFFIX Golgi_Na 
	USEION na READ ena WRITE ina 
	RANGE gnabar, ina, g
	RANGE alpha_m, beta_m, alpha_h, beta_h 
	RANGE Aalpha_m, Kalpha_m, V0alpha_m
	RANGE Abeta_m, Kbeta_m, V0beta_m

	RANGE Aalpha_h, Kalpha_h, V0alpha_h
	RANGE Abeta_h, Kbeta_h, V0beta_h

	RANGE m_inf, tau_m, h_inf, tau_h, m, h, tcorr
} 
 
UNITS { 
	(mA) = (milliamp) 
	(mV) = (millivolt) 
} 
 
PARAMETER { 

	Aalpha_m = 0.3 (/ms-mV)
	Kalpha_m = -10 (mV)
	V0alpha_m = -25 (mV)
	
	Abeta_m = 12 (/ms)
	Kbeta_m = -18.182 (mV)
	V0beta_m = -50 (mV)

	Aalpha_h  = 0.21 (/ms)
	Kalpha_h  = -3.333 (mV)
	V0alpha_h = -50 (mV)
 
	Abeta_h  = 3 (/ms)
	Kbeta_h  = -5 (mV)
	V0beta_h = -17 (mV)
	   
	v (mV) 
	gnabar	=  0.048 (mho/cm2)

	ena (mV) 
	celsius (degC)
	Q10 = 3 (1)
} 

STATE { 
	m 
	h 
} 

ASSIGNED { 
	ina (mA/cm2) 
	m_inf 
	h_inf 
	tau_m (ms) 
	tau_h (ms) 
	g (mho/cm2) 
	alpha_m (/ms)
	beta_m (/ms)
	alpha_h (/ms)
	beta_h (/ms)
	tcorr	(1)
} 
 
INITIAL { 
	rate(v) 
	m = m_inf 
	h = h_inf 
} 
 
BREAKPOINT { 
	SOLVE states METHOD derivimplicit 
	g = gnabar*m*m*m*h 
	ina = g*(v - ena)
	alpha_m = alp_m(v)
	beta_m = bet_m(v) 
	alpha_h = alp_h(v)
	beta_h = bet_h(v) 
} 
 
DERIVATIVE states { 
	rate(v) 
	m' =(m_inf - m)/tau_m 
	h' =(h_inf - h)/tau_h 
} 
 
FUNCTION alp_m(v(mV))(/ms) {
	tcorr = Q10^((celsius-20(degC))/10(degC)) 
	alp_m = tcorr*Aalpha_m*linoid(v-V0alpha_m,Kalpha_m) 
} 
 
FUNCTION bet_m(v(mV))(/ms) {
	tcorr = Q10^((celsius-20(degC))/10(degC)) 
	bet_m = tcorr*Abeta_m*exp((v-V0beta_m)/Kbeta_m) 
} 
 
FUNCTION alp_h(v(mV))(/ms) {
	tcorr = Q10^((celsius-20(degC))/10(degC)) 
	alp_h = tcorr*Aalpha_h*exp((v-V0alpha_h)/Kalpha_h) 
} 
 
FUNCTION bet_h(v(mV))(/ms) {
	tcorr = Q10^((celsius-20(degC))/10(degC)) 
	bet_h = tcorr*Abeta_h/(1+exp((v-V0beta_h)/Kbeta_h))
} 
 
PROCEDURE rate(v (mV)) {LOCAL a_m, b_m, a_h, b_h 
	TABLE m_inf, tau_m, h_inf, tau_h 
	DEPEND Aalpha_m, Kalpha_m, V0alpha_m, 
	       Abeta_m, Kbeta_m, V0beta_m,
               Aalpha_h, Kalpha_h, V0alpha_h,
               Abeta_h, Kbeta_h, V0beta_h, celsius FROM -100 TO 30 WITH 13000 
	a_m = alp_m(v)  
	b_m = bet_m(v) 
	a_h = alp_h(v)  
	b_h = bet_h(v) 
	m_inf = a_m/(a_m + b_m) 
	tau_m = 1/(a_m + b_m) 
	h_inf = a_h/(a_h + b_h) 
	tau_h = 1/(a_h + b_h) 
	:if (tau_h<0.1 (ms)) {tau_h=0.1 (ms)} : riga aggiunta il 10 giugno 2003
} 

FUNCTION linoid(x (mV),y (mV)) (mV) {
        if (fabs(x/y) < 1e-6) {
                linoid = y*(1 - x/y/2)
        }else{
                linoid = x/(1 - exp(x/y))
        }
}