Reconstructing cerebellar granule layer evoked LFP using convolution (ReConv) (Diwakar et al. 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:139883
The model allows reconstruction of evoked local field potentials as seen in the cerebellar granular layer. The approach uses a detailed model of cerebellar granule neuron to generate data traces and then uses a "ReConv" or jittered repetitive convolution technique to reproduce post-synaptic local field potentials in the granular layer. The algorithm was used to generate both in vitro and in vivo evoked LFP and reflected the changes seen during LTP and LTD, when such changes were induced in the underlying neurons by modulating release probability of synapses and sodium channel regulated intrinsic excitability of the cells.
Reference:
1 . Diwakar S, Lombardo P, Solinas S, Naldi G, D'Angelo E (2011) Local field potential modeling predicts dense activation in cerebellar granule cells clusters under LTP and LTD control. PLoS One 6:e21928 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Extracellular;
Brain Region(s)/Organism:
Cell Type(s): Cerebellum interneuron granule GLU cell;
Channel(s): I K; I M; I K,Ca; I Sodium; I Calcium; I Cl, leak;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; MATLAB; Octave;
Model Concept(s): Extracellular Fields; Evoked LFP;
Implementer(s): Diwakar, Shyam [shyam at amrita.edu];
Search NeuronDB for information about:  Cerebellum interneuron granule GLU cell; GabaA; AMPA; NMDA; I K; I M; I K,Ca; I Sodium; I Calcium; I Cl, leak;
/
ReConv
data
readme.html
AmpaCOD.mod *
GRC_CA.mod *
GRC_CALC.mod *
GRC_GABA.mod *
GRC_KA.mod *
GRC_KCA.mod *
GRC_KIR.mod *
GRC_KM.mod *
GRC_KV.mod *
GRC_LKG1.mod *
GRC_LKG2.mod *
GRC_NA.mod *
NmdaS.mod *
Pregen.mod *
ComPanel.hoc
Grc_Cell.hoc
mosinit.hoc
Parametri.hoc
ReConv_GrC.jpg
ReConv_invitro.jpg
ReConv_invivo.jpg
Record_vext.hoc
Start.hoc
                            
TITLE Cerebellum Granule Cell Model

COMMENT
        KA channel
   
	Author: E.D'Angelo, T.Nieus, A. Fontana
	Last revised: Egidio 3.12.2003
ENDCOMMENT

NEURON { 
	SUFFIX GRC_KA
	USEION k READ ek WRITE ik 
	RANGE gkbar, ik, g, alpha_a, beta_a, alpha_b, beta_b
	RANGE Aalpha_a, Kalpha_a, V0alpha_a
	RANGE Abeta_a, Kbeta_a, V0beta_a
	RANGE Aalpha_b, Kalpha_b, V0alpha_b
	RANGE Abeta_b, Kbeta_b, V0beta_b
	RANGE V0_ainf, K_ainf, V0_binf, K_binf
	RANGE a_inf, tau_a, b_inf, tau_b 
} 
 
UNITS { 
	(mA) = (milliamp) 
	(mV) = (millivolt) 
} 
 
PARAMETER { 
	Aalpha_a = 0.8147 (/ms) :4.88826
	Kalpha_a = -23.32708 (mV)
	V0alpha_a = -9.17203 (mV)
	Abeta_a = 0.1655 (/ms)   : 0.99285	
	Kbeta_a = 19.47175 (mV)
	V0beta_a = -18.27914 (mV)

	Aalpha_b = 0.0368 (/ms)  : 0.11042 
	Kalpha_b = 12.8433 (mV)
	V0alpha_b = -111.33209 (mV)   
	Abeta_b = 0.0345(/ms)   : 0.10353 
	Kbeta_b = -8.90123 (mV)
	V0beta_b = -49.9537 (mV)

	V0_ainf = -38(mV)
	K_ainf = -17(mV)

	V0_binf = -78.8 (mV)
	K_binf = 8.4 (mV)
	v (mV) 
	gkbar= 0.0032 (mho/cm2) :0.003 
	ek = -84.69 (mV) 
	celsius = 30 (degC) 
} 

STATE { 
	a
	b 
} 

ASSIGNED { 
	ik (mA/cm2) 
	a_inf 
	b_inf 
	tau_a (ms) 
	tau_b (ms) 
	g (mho/cm2) 
	alpha_a (/ms)
	beta_a (/ms)
	alpha_b (/ms)
	beta_b (/ms)
} 
 
INITIAL { 
	rate(v) 
	a = a_inf 
	b = b_inf 
} 
 
BREAKPOINT { 
	SOLVE states METHOD derivimplicit 
	g = gkbar*a*a*a*b 
	ik = g*(v - ek)
	alpha_a = alp_a(v)
	beta_a = bet_a(v) 
	alpha_b = alp_b(v)
	beta_b = bet_b(v) 
} 
 
DERIVATIVE states { 
	rate(v) 
	a' =(a_inf - a)/tau_a 
	b' =(b_inf - b)/tau_b 
} 
 
FUNCTION alp_a(v(mV))(/ms) { LOCAL Q10
	Q10 = 3^((celsius-25.5(degC))/10(degC))
:	alp_a = Q10*Aalpha_a*exp(Kalpha_a*(v-V0alpha_a)) 
:	alp_a = -0.04148(/mV-ms)*linoid(v+67.697(mV),-3.857(mV))
	alp_a = Q10*Aalpha_a*sigm(v-V0alpha_a,Kalpha_a)
} 
 
FUNCTION bet_a(v(mV))(/ms) { LOCAL Q10
	Q10 = 3^((celsius-25.5(degC))/10(degC))
:	bet_a = Q10*Abeta_a*exp(Kbeta_a*(v-V0beta_a)) 
:	bet_a = 0.0359(/mV-ms)*linoid(v+45.878(mV),23.654(mV))
	bet_a = Q10*Abeta_a/(exp((v-V0beta_a)/Kbeta_a))
} 
 
FUNCTION alp_b(v(mV))(/ms) { LOCAL Q10
	Q10 = 3^((celsius-25.5(degC))/10(degC))
:	alp_b = Q10*Aalpha_b*exp(Kalpha_b*(v-V0alpha_b)) 
:	alp_b = 0.356(/mV-ms)*linoid(v+231.03(mV),17.8(mV))
	alp_b = Q10*Aalpha_b*sigm(v-V0alpha_b,Kalpha_b)
} 
 
FUNCTION bet_b(v(mV))(/ms) { LOCAL Q10
	Q10 = 3^((celsius-25.5(degC))/10(degC))
:	bet_b = Q10*Abeta_b*exp(Kbeta_b*(v-V0beta_b)) 
:	bet_b = -0.00825(/mV-ms)*linoid(v+43.284(mV),-8.927(mV))
	bet_b = Q10*Abeta_b*sigm(v-V0beta_b,Kbeta_b)
} 
 
PROCEDURE rate(v (mV)) {LOCAL a_a, b_a, a_b, b_b 
	TABLE a_inf, tau_a, b_inf, tau_b 
	DEPEND Aalpha_a, Kalpha_a, V0alpha_a, 
	       Abeta_a, Kbeta_a, V0beta_a,
               Aalpha_b, Kalpha_b, V0alpha_b,
               Abeta_b, Kbeta_b, V0beta_b, celsius FROM -100 TO 30 WITH 13000 
	a_a = alp_a(v)  
	b_a = bet_a(v) 
	a_b = alp_b(v)  
	b_b = bet_b(v) 
	a_inf = 1/(1+exp((v-V0_ainf)/K_ainf)) 
	tau_a = 1/(a_a + b_a) 
	b_inf = 1/(1+exp((v-V0_binf)/K_binf))
	tau_b = 1/(a_b + b_b) 
: Bardoni Belluzzi data
:	a_inf = 1/(1+exp(-(v+46.7)/19.8))
:	tau_a = 0.41*exp(-(v+43.5)/42.8)+0.167
:	b_inf = 1/(1+exp((v+78.8)/8.4))
:	tau_b = 10.8 + 0.03*v + 1/(57.9*exp(0.127*v)+0.000134*exp(-0.059*v))
}

FUNCTION linoid(x (mV),y (mV)) (mV) {
        if (fabs(x/y) < 1e-6) {
                linoid = y*(1 - x/y/2)
        }else{
                linoid = x/(exp(x/y) - 1)
        }
} 

FUNCTION sigm(x (mV),y (mV)) {
                sigm = 1/(exp(x/y) + 1)
}