Synchrony by synapse location (McTavish et al. 2012)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144054
This model considers synchrony between mitral cells induced via shared granule cell interneurons while taking into account the spatial constraints of the system. In particular, since inhibitory inputs decay passively along the lateral dendrites, this model demonstrates that an optimal arrangement of the inhibitory synapses will be near the cell bodies of the relevant mitral cells.
Reference:
1 . McTavish TS, Migliore M, Shepherd GM, Hines ML (2012) Mitral cell spike synchrony modulated by dendrodendritic synapse location. Front Comput Neurosci 6:3 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell;
Channel(s): I Na,t; I A; I K;
Gap Junctions:
Receptor(s): GabaB; AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Synchronization; Olfaction;
Implementer(s): McTavish, Thomas S [thomas.mctavish at yale.edu];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell; GabaB; AMPA; NMDA; I Na,t; I A; I K;
/
mctavish_syncbylocation
src
ampanmda.mod
fi.mod
kamt.mod
kdrmt.mod
naxn.mod
ThreshDetect.mod *
allsynhinton.hoc *
analysis.py
animtest.py
antest.ses *
bulbspikes.py
clear.hoc
connect.hoc
control.ses
default.hoc
granule.hoc *
hinton.hoc
init.hoc *
iterator.hoc *
lptiter.hoc
mgrs.hoc
michele_movie.hoc
mitral.hoc
mosinit.hoc
net.hoc
param.hoc
params.py
parinit.hoc
pattern.hoc
perfrun.hoc
show.hoc
showw.hoc
somesyn.hoc *
sortspike *
split.hoc
start.hoc
start.ses
stimodors.hoc
subset.hoc
subset_control.ses *
synweightsnapshot.py
viewspikes.hoc
viewspikes1.hoc
weight_movie.hoc
weightsave.hoc
                            
// Procedures to make global variables if they do not already exist.

{load_file("stdlib.hoc")}

// $s1 is the name of the global variable
// $2 is the value
proc default_var() {localobj s
	s = new String()
	if (name_declared($s1) < 2) {
		hoc_ac_ = $2
		sprint(s.s, "%s = hoc_ac_", $s1)
		execute(s.s)
	}	
	sprint(s.s, "hoc_ac_ = %s", $s1)
	execute(s.s)
	printf("%s = %g\n", $s1, hoc_ac_)
}

// Similar to default_var(), but assigns global strdefs.
// $s1 is the name of the global strdef variable
// $2 is the value of the strdef
proc default_var_str() {localobj s
	s = new String()
	if (name_declared($s1) < 2) {
		sprint(s.s, "strdef %s", $s1)
		execute(s.s)
		sprint(s.s, "%s = \"%s\"", $s1, $s2)
		execute(s.s)
	}
	sprint(s.s, "print \"%s = \", %s", $s1, $s1)
	execute(s.s)
}

// Similar to default_var(), but assigns global vectors.
// $s1 is the name of the global vector variable
// $2 are the floating point values of the vector formatted as a
//   comma delimited string, like "1, 3.14, 9.876".
proc default_var_vec() {localobj s, pyobj
	s = new String()
	if (name_declared($s1) < 2) {
		// We write the following Python code:
		// str = $s2
		// str = str.lstrip('[')
		// str = str.rstrip(']')
		// stripped = str.split(',')
		// vals = []
		// for elem in stripped:
    		//     trimmed = elem.strip()
    		//     vals.append(float(trimmed))
		// vec_vals = Vector(vals)
		/// Then put these into the global variable.
		sprint(s.s, "str = \"%s\"", $s2)
		nrnpython(s.s)
		nrnpython("str = str.lstrip(\'[\')")
		nrnpython("str = str.rstrip(\']\')")
		nrnpython("stripped = str.split(\',\')")
		nrnpython("vals = []")
		nrnpython("for elem in stripped:\n    trimmed = elem.strip()\n    vals.append(float(trimmed))")
		pyobj = new PythonObject()
		sprint(s.s, "objref %s", $s1)
		execute(s.s)
		sprint(s.s, "%s = new Vector(%d)", $s1, pyobj.vals.__len__())
		execute(s.s)
		hoc_obj_[0] = pyobj.vals // copy to a global since we are in the scope of a proc
		sprint(s.s, "%s = %s.from_python(hoc_obj_[0])", $s1, $s1)
		execute(s.s)
	}
	sprint(s.s, "print \"%s = \", %s.printf()", $s1, $s1)
	execute(s.s)
}