Synchrony by synapse location (McTavish et al. 2012)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144054
This model considers synchrony between mitral cells induced via shared granule cell interneurons while taking into account the spatial constraints of the system. In particular, since inhibitory inputs decay passively along the lateral dendrites, this model demonstrates that an optimal arrangement of the inhibitory synapses will be near the cell bodies of the relevant mitral cells.
Reference:
1 . McTavish TS, Migliore M, Shepherd GM, Hines ML (2012) Mitral cell spike synchrony modulated by dendrodendritic synapse location. Front Comput Neurosci 6:3 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell;
Channel(s): I Na,t; I A; I K;
Gap Junctions:
Receptor(s): GabaB; AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Synchronization; Olfaction;
Implementer(s): McTavish, Thomas S [thomas.mctavish at yale.edu];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell; GabaB; AMPA; NMDA; I Na,t; I A; I K;
/
mctavish_syncbylocation
src
ampanmda.mod
fi.mod
kamt.mod
kdrmt.mod
naxn.mod
ThreshDetect.mod *
allsynhinton.hoc *
analysis.py
animtest.py
antest.ses *
bulbspikes.py
clear.hoc
connect.hoc
control.ses
default.hoc
granule.hoc *
hinton.hoc
init.hoc *
iterator.hoc *
lptiter.hoc
mgrs.hoc
michele_movie.hoc
mitral.hoc
mosinit.hoc
net.hoc
param.hoc
params.py
parinit.hoc
pattern.hoc
perfrun.hoc
show.hoc
showw.hoc
somesyn.hoc *
sortspike *
split.hoc
start.hoc
start.ses
stimodors.hoc
subset.hoc
subset_control.ses *
synweightsnapshot.py
viewspikes.hoc
viewspikes1.hoc
weight_movie.hoc
weightsave.hoc
                            
: copied by Hines from Exp2syn and added spike dependent plasticity
COMMENT
Two state kinetic scheme synapse described by rise time tau1,
and decay time constant tau2. The normalized peak condunductance is 1.
Decay time MUST be greater than rise time.

The solution of A->G->bath with rate constants 1/tau1 and 1/tau2 is
 A = a*exp(-t/tau1) and
 G = a*tau2/(tau2-tau1)*(-exp(-t/tau1) + exp(-t/tau2))
	where tau1 < tau2

If tau2-tau1 -> 0 then we have a alphasynapse.
and if tau1 -> 0 then we have just single exponential decay.

The factor is evaluated in the
initial block such that an event of weight 1 generates a
peak conductance of 1.

Because the solution is a sum of exponentials, the
coupled equations can be solved as a pair of independent equations
by the more efficient cnexp method.

ENDCOMMENT

NEURON {
	POINT_PROCESS FastInhib
	RANGE tau1, tau2, e, i
	NONSPECIFIC_CURRENT i
	RANGE gmax
	RANGE x, mgid, ggid, srcgid
	GLOBAL ltdinvl, ltpinvl, sighalf, sigslope

	RANGE g
}

UNITS {
	(nA) = (nanoamp)
	(mV) = (millivolt)
	(uS) = (microsiemens)
}

PARAMETER {
	tau1= 1 (ms) <1e-9,1e9> : was 1
	tau2 = 200 (ms) <1e-9,1e9> : was 200
	gmax = .003 (uS) 
	e = -80	(mV)
	ltdinvl = 250 (ms)		: longer intervals, no change
	ltpinvl = 33.33 (ms)		: shorter interval, LTP
	sighalf = 25 (1)
	sigslope = 3 (1)
	x = 0 (um) : cartesian synapse location
	mgid = -1 : associated mitral gid
	ggid = -1 : associated granule gid
	srcgid = -1 : the gid of the granule detector
}

ASSIGNED {
	v (mV)
	i (nA)
	g (uS)
	factor
	w (uS)
	total (uS)
}

STATE {
	A
	B
}

INITIAL {
	LOCAL tp
	if (tau1/tau2 > .9999) {
		tau1 = .9999*tau2
	}
	A = 0
	B = 0
	tp = (tau1*tau2)/(tau2 - tau1) * log(tau2/tau1)
	factor = -exp(-tp/tau1) + exp(-tp/tau2)
	factor = 1/factor
}

BREAKPOINT {
	SOLVE state METHOD cnexp
	g = (B - A)*gmax
	i = g*(v - e)
}

DERIVATIVE state {
	A' = -A/tau1
	B' = -B/tau2
}

FUNCTION plast(step(1))(1) {
	plast = 1 - 1/(1 + exp((step - sighalf)/sigslope))
}

FUNCTION norm_weight_to_sig(w) {
    norm_weight_to_sig = floor(0.4999 + log(((-1/(w-1))-1)/exp(-sighalf/sigslope))*sigslope)
}

NET_RECEIVE(weight, s, w, tlast (ms)) {
	INITIAL {
		s = 0
		w = 0
		tlast = -1e9(ms)
	}
	if (t - tlast < ltpinvl) { : LTP
		s = s + 1
		if (s > 2*sighalf) { s = 2*sighalf }
	}else if (t - tlast > ltdinvl) { : no change
	}else{ : LTD
		s = s - 1
		if (s < 0) { s = 0 }
	}
	tlast = t
	w = weight*plast(s)
	A = A + w*factor
	B = B + w*factor
}