Synchrony by synapse location (McTavish et al. 2012)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144054
This model considers synchrony between mitral cells induced via shared granule cell interneurons while taking into account the spatial constraints of the system. In particular, since inhibitory inputs decay passively along the lateral dendrites, this model demonstrates that an optimal arrangement of the inhibitory synapses will be near the cell bodies of the relevant mitral cells.
Reference:
1 . McTavish TS, Migliore M, Shepherd GM, Hines ML (2012) Mitral cell spike synchrony modulated by dendrodendritic synapse location. Front Comput Neurosci 6:3 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell;
Channel(s): I Na,t; I A; I K;
Gap Junctions:
Receptor(s): GabaB; AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Synchronization; Olfaction;
Implementer(s): McTavish, Thomas S [thomas.mctavish at yale.edu];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell; GabaB; AMPA; NMDA; I Na,t; I A; I K;
/
mctavish_syncbylocation
src
ampanmda.mod
fi.mod
kamt.mod
kdrmt.mod
naxn.mod
ThreshDetect.mod *
allsynhinton.hoc *
analysis.py
animtest.py
antest.ses *
bulbspikes.py
clear.hoc
connect.hoc
control.ses
default.hoc
granule.hoc *
hinton.hoc
init.hoc *
iterator.hoc *
lptiter.hoc
mgrs.hoc
michele_movie.hoc
mitral.hoc
mosinit.hoc
net.hoc
param.hoc
params.py
parinit.hoc
pattern.hoc
perfrun.hoc
show.hoc
showw.hoc
somesyn.hoc *
sortspike *
split.hoc
start.hoc
start.ses
stimodors.hoc
subset.hoc
subset_control.ses *
synweightsnapshot.py
viewspikes.hoc
viewspikes1.hoc
weight_movie.hoc
weightsave.hoc
                            
begintemplate GranuleSpine
public head, neck, all
create head, neck
objref all
proc init() {
	all = new SectionList()
	head all.append()
	neck all.append()
	connect head(0), neck(1)
	neck { L = 2  diam = .2 }
	head { L = 1  diam = 1 }
	memb()
}
proc memb() {
	forsec all {
		insert pas 
		insert kamt gbar_kamt=0.008 ek=-90
		insert nax gbar_nax=0.02 sh_nax=15 ena=60
		Ra = 80
		cm = 1
		g_pas = 1/30000
		e_pas = -65
		ek = -90
	}
}
endtemplate GranuleSpine

begintemplate Granule

public soma, priden, priden2
public prilist
public position, x, y, z

//create soma, priden2[3], priden
create soma, priden2[1], priden

objref prilist

proc init() {
	npri = 1
	create priden2[npri]
	prilist = new SectionList()
	priden prilist.append()
	for i=0, npri-1 priden2[i] { prilist.append() }
topol()
geometry()
segments()
memb()
	x = y = z = 0 // only change via position
}


proc topol() {local i
	connect priden(0), soma(1)
	for i=0, npri-1 {connect priden2[i](0), priden(.8)}
}

proc segments() {local i
	soma.nseg= 1
	forsec "priden" nseg = 10
}

proc geometry() {local i
	basic_shape()
	soma { L = 8  diam = 8}
	priden {L=150 diam=.5}
	for i=0, npri-1 {priden2[i] {L=100 diam=.4}}
//	define_shape()
}
	
proc basic_shape() {local i
  soma {pt3dclear() pt3dadd(0, 0, 0, 1) pt3dadd(0, 1, 0, 1)}
  priden {pt3dclear() pt3dadd(0, 0, 0, 1) pt3dadd(0, 1, 0, 1)}
  for i=0,npri-1 {
	priden2[i] {pt3dclear() pt3dadd(0, 0, 0, 1) pt3dadd(i/npri, 1, 0, 1)}
  }
}

proc memb() {
	forall {
		insert pas 
		insert kamt gbar_kamt=0.008 ek=-90
		insert nax gbar_nax=0.02 sh_nax=15 ena=60
		Ra = 80
		cm = 1
		g_pas = 1/30000
		e_pas = -65
		ek = -90
	}

	soma {
		gbar_nax=0.04
       		insert kdrmt gbar_kdrmt=0.006
		gbar_kamt = 0.004
		cm = 4
		g_pas = cm/30000
	}

	forsec prilist {
		cm = 4
		g_pas = cm/30000
	}
}

proc position() { local i
  soma for i = 0, n3d()-1 {
    pt3dchange(i, $1-x+x3d(i), $2-y+y3d(i), $3-z+z3d(i), diam3d(i))
  }
  x = $1  y = $2  z = $3
}

endtemplate Granule