Cerebellar gain and timing control model (Yamazaki & Tanaka 2007)(Yamazaki & Nagao 2012)

 Download zip file 
Help downloading and running models
Accession:144416
This paper proposes a hypothetical computational mechanism for unified gain and timing control in the cerebellum. The hypothesis is justified by computer simulations of a large-scale spiking network model of the cerebellum.
Reference:
1 . Yamazaki T, Tanaka S (2007) A spiking network model for passage-of-time representation in the cerebellum. Eur J Neurosci 26:2279-92 [PubMed]
2 . Yamazaki T, Nagao S (2012) A computational mechanism for unified gain and timing control in the cerebellum. PLoS One 7:e33319 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum Purkinje GABA cell; Cerebellum interneuron granule GLU cell; Cerebellum golgi cell; Cerebellum deep nucleus neuron;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: C or C++ program;
Model Concept(s): Spatio-temporal Activity Patterns; Detailed Neuronal Models; Learning; Sensory processing;
Implementer(s): Yamazaki, Tadashi ;
Search NeuronDB for information about:  Cerebellum Purkinje GABA cell; Cerebellum interneuron granule GLU cell;
set size square

set xtics 0.5
set ytics 20

g1(x) = d1*cos(2*3.14*(x+e1)/2.0)+f1
g2(x) = d2*cos(2*3.14*(x+e2)/2.0)+f2
g3(x) = d3*cos(2*3.14*(x+e3)/2.0)+f3
g4(x) = d4*cos(2*3.14*(x+e4)/2.0)+f4

fit g1(x) '10_10.dat' via d1,e1,f1
fit g2(x) '100_10.dat' via d2,e2,f2
fit g3(x) '200_10.dat' via d3,e3,f3
fit g4(x) '300_10.dat' via d4,e4,f4

set terminal postscript eps
set output 'pkj_10.eps'
plot  [0:2][0:100] '10_10.dat' t '' w p, '100_10.dat' t '' w p, '200_10.dat' t '' w p, '300_10.dat' t '' w p, g1(x) t '1st' w l, g2(x) t '100th' w l, g3(x) t '200th' w l, g4(x) t '300th' w l
set terminal x11
replot