Parametric computation and persistent gamma in a cortical model (Chambers et al. 2012)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144579
Using the Traub et al (2005) model of the cortex we determined how 33 synaptic strength parameters control gamma oscillations. We used fractional factorial design to reduce the number of runs required to 4096. We found an expected multiplicative interaction between parameters.
Reference:
1 . Chambers JD, Bethwaite B, Diamond NT, Peachey T, Abramson D, Petrou S, Thomas EA (2012) Parametric computation predicts a multiplicative interaction between synaptic strength parameters that control gamma oscillations. Front Comput Neurosci 6:53 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Axon; Synapse; Channel/Receptor; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; Neocortex V1 interneuron basket PV GABA cell; Neocortex fast spiking (FS) interneuron; Neocortex spiny stellate cell; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s): I A; I K; I K,leak; I K,Ca; I Calcium; I_K,Na;
Gap Junctions: Gap junctions;
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Oscillations; Parameter sensitivity;
Implementer(s): Thomas, Evan [evan at evan-thomas.net]; Chambers, Jordan [jordandchambers at gmail.com];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; Neocortex V1 interneuron basket PV GABA cell; GabaA; AMPA; NMDA; I A; I K; I K,leak; I K,Ca; I Calcium; I_K,Na; Gaba; Glutamate;
/
FRBGamma
mod
alphasyndiffeq.mod *
alphasynkin.mod *
alphasynkint.mod *
ampa.mod *
ar.mod *
cad.mod *
cal.mod *
cat.mod *
cat_a.mod *
gabaa.mod *
iclamp_const.mod *
k2.mod *
ka.mod *
ka_ib.mod *
kahp.mod *
kahp_deeppyr.mod *
kahp_slower.mod *
kc.mod *
kc_fast.mod *
kdr.mod *
kdr_fs.mod *
km.mod *
naf.mod
naf_tcr.mod *
naf2.mod
nap.mod
napf.mod *
napf_spinstell.mod *
napf_tcr.mod *
par_ggap.mod *
pulsesyn.mod *
rampsyn.mod *
rand.mod *
ri.mod
traub_nmda.mod *
                            
TITLE Potasium C type current for RD Traub, J Neurophysiol 89:909-921, 2003

COMMENT
	Modified with simple speed up *2 factor at bottom - Tom Morse
	Implemented by Maciej Lazarewicz 2003 (mlazarew@seas.upenn.edu)

ENDCOMMENT

INDEPENDENT { t FROM 0 TO 1 WITH 1 (ms) }

UNITS { 
	(mV) = (millivolt) 
	(mA) = (milliamp) 
	(mM) = (milli/liter)
}
 
NEURON { 
	SUFFIX kc_fast
	USEION k READ ek WRITE ik
	USEION ca READ cai
	RANGE  gbar, ik
}

PARAMETER { 
	gbar = 0.0 	(mho/cm2)
	v (mV) ek 		(mV)  
	cai		(mM)
} 

ASSIGNED { 
	ik 		(mA/cm2) 
	alpha (/ms) beta	(/ms)
}
 
STATE {
	m
}

BREAKPOINT { 
	SOLVE states METHOD cnexp
	if( 0.004(/mM) * cai < 1 ) {
		ik = gbar * m * 0.004(/mM) * cai * ( v - ek ) 
	}else{
		ik = gbar * m * ( v - ek ) 
	}
}
 
INITIAL { 
	settables(v) 
	m = alpha / ( alpha + beta )
	m = 0
}
 
DERIVATIVE states { 
	settables(v) 
	m' = alpha * ( 1 - m ) - beta * m 
}

UNITSOFF 

PROCEDURE settables(v(mV)) { 
	TABLE alpha, beta FROM -120 TO 40 WITH 641

	if( v <= -10.0 ) {
		alpha = 2 / 37.95 * ( exp( ( v + 50 ) / 11 - ( v + 53.5 ) / 27 ) )

		: Note that there is typo in the paper - missing minus sign in the front of 'v'
		beta  = 2 * exp( ( - v - 53.5 ) / 27 ) - alpha
	}else{
		alpha = 2 * exp( ( - v - 53.5 ) / 27 )
		beta  = 0
	}
	: speed-up of C kinetics here.
	alpha = alpha * 2
	beta  = beta  * 2
}

UNITSON