Parametric computation and persistent gamma in a cortical model (Chambers et al. 2012)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144579
Using the Traub et al (2005) model of the cortex we determined how 33 synaptic strength parameters control gamma oscillations. We used fractional factorial design to reduce the number of runs required to 4096. We found an expected multiplicative interaction between parameters.
Reference:
1 . Chambers JD, Bethwaite B, Diamond NT, Peachey T, Abramson D, Petrou S, Thomas EA (2012) Parametric computation predicts a multiplicative interaction between synaptic strength parameters that control gamma oscillations. Front Comput Neurosci 6:53 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Axon; Synapse; Channel/Receptor; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; Neocortex V1 interneuron basket PV GABA cell; Neocortex fast spiking (FS) interneuron; Neocortex spiny stellate cell; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s): I A; I K; I K,leak; I K,Ca; I Calcium; I_K,Na;
Gap Junctions: Gap junctions;
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Oscillations; Parameter sensitivity;
Implementer(s): Thomas, Evan [evan at evan-thomas.net]; Chambers, Jordan [jordandchambers at gmail.com];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; Neocortex V1 interneuron basket PV GABA cell; GabaA; AMPA; NMDA; I A; I K; I K,leak; I K,Ca; I Calcium; I_K,Na; Gaba; Glutamate;
/
FRBGamma
mod
alphasyndiffeq.mod *
alphasynkin.mod *
alphasynkint.mod *
ampa.mod *
ar.mod *
cad.mod *
cal.mod *
cat.mod *
cat_a.mod *
gabaa.mod *
iclamp_const.mod *
k2.mod *
ka.mod *
ka_ib.mod *
kahp.mod *
kahp_deeppyr.mod *
kahp_slower.mod *
kc.mod *
kc_fast.mod *
kdr.mod *
kdr_fs.mod *
km.mod *
naf.mod
naf_tcr.mod *
naf2.mod
nap.mod
napf.mod *
napf_spinstell.mod *
napf_tcr.mod *
par_ggap.mod *
pulsesyn.mod *
rampsyn.mod *
rand.mod *
ri.mod
traub_nmda.mod *
                            
COMMENT
rampsyn.mod
for use with expsyn.mod to make a Traub-like NMDA receptor
Tom Morse, Michael Hines
ENDCOMMENT
NEURON {
	POINT_PROCESS RampSyn
	RANGE time_interval, e, i, weight, saturation_fact, k
	NONSPECIFIC_CURRENT i
}

UNITS {
	(nA) = (nanoamp)
	(mV) = (millivolt)
	(uS) = (microsiemens)
}

PARAMETER {
	time_interval = 5 (ms) <1e-9,1e9>
	e = 0	(mV)
	weight = 2.5e-5 (uS)	: example conductance scale from Traub 2005 et al
			 	: gNMDA_suppyrRS_to_suppyrRS (double check units)
	saturation_fact=1e10 (1) :80e0 (1) : this saturation factor is multiplied into
		: the conductance scale, weight, for testing against the
		: instantaneous conductance, to see if it should be limited.
}

ASSIGNED {
	v (mV)
	i (nA)
	k (uS/ms)
}

STATE {
	g (uS)
}

INITIAL {
	g=0
	k=0
}

BREAKPOINT {
	SOLVE state METHOD cnexp
	if (g > saturation_fact * weight) { g = saturation_fact * weight }
	i = g*(v - e)
}

DERIVATIVE state {
	g' = k
}

NET_RECEIVE(weight (uS)) {
	if (flag>=1) {
		: self event arrived, terminate ramp
		k = k - weight/time_interval
		g = g - weight
	} else {
		: stimulus arrived, make or continue ramp
		net_send(time_interval, 1) : self event to terminate ramp
		k = k + weight/time_interval
	}
}