Functional impact of dendritic branch point morphology (Ferrante et al., 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:146509
" ... Here, we first quantified the morphological variability of branch points from two-photon images of rat CA1 pyramidal neurons. We then investigated the geometrical features affecting spike initiation, propagation, and timing with a computational model validated by glutamate uncaging experiments. The results suggest that even subtle membrane readjustments at branch point could drastically alter the ability of synaptic input to generate, propagate, and time action potentials."
Reference:
1 . Ferrante M, Migliore M, Ascoli GA (2013) Functional impact of dendritic branch-point morphology. J Neurosci 33:2156-65 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Synapse; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,t; I A; I K; I h;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Dendritic Action Potentials; Active Dendrites; Influence of Dendritic Geometry; Action Potentials; Conduction failure; Information transfer; Bifurcation;
Implementer(s): Ferrante, Michele [mferr133 at bu.edu];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; I Na,t; I A; I K; I h; Glutamate;
/
Branch_Point_Tapering
readme.html
distr.mod *
h.mod *
kadist.mod *
kaprox.mod *
kdrca1.mod *
na3n.mod *
netstimm.mod *
morph.txt
mosinit.hoc
screenshot.png
tapering.hoc
                            
TITLE K-A channel from Klee Ficker and Heinemann
: modified to account for Dax A Current ----------
: M.Migliore Jun 1997

UNITS {
        (mA) = (milliamp)
        (mV) = (millivolt)
}

PARAMETER {
	celsius
        v (mV)
        gkabar=.008 (mho/cm2)
        vhalfn=-1   (mV)
        vhalfl=-56   (mV)
        a0l=0.05      (/ms)
        a0n=.1    (/ms)
        zetan=-1.8    (1)
        zetal=3    (1)
        gmn=0.39   (1)
        gml=1   (1)
        lmin=2  (mS)
        nmin=0.2  (mS)
        pw=-1    (1)
        tq=-40
        qq=5
        q10=5
        qtl=1
	ek
}


NEURON {
        SUFFIX kad
        USEION k READ ek WRITE ik
        RANGE gkabar,gka
        GLOBAL ninf,linf,taul,taun,lmin
}

STATE {
        n
        l
}

ASSIGNED {
        ik (mA/cm2)
        ninf
        linf      
        taul
        taun
        gka
}

BREAKPOINT {
        SOLVE states METHOD cnexp
        gka = gkabar*n*l
        ik = gka*(v-ek)

}

INITIAL {
	rates(v)
	n=ninf
	l=linf
}


FUNCTION alpn(v(mV)) {
LOCAL zeta
  zeta=zetan+pw/(1+exp((v-tq)/qq))
  alpn = exp(1.e-3*zeta*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betn(v(mV)) {
LOCAL zeta
  zeta=zetan+pw/(1+exp((v-tq)/qq))
  betn = exp(1.e-3*zeta*gmn*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION alpl(v(mV)) {
  alpl = exp(1.e-3*zetal*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betl(v(mV)) {
  betl = exp(1.e-3*zetal*gml*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius)))
 
}

DERIVATIVE states {  
        rates(v)
        n' = (ninf - n)/taun
        l' = (linf - l)/taul
}

PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a,qt
        qt=q10^((celsius-24)/10)
        a = alpn(v)
        ninf = 1/(1 + a)
        taun = betn(v)/(qt*a0n*(1+a))
        if (taun<nmin) {taun=nmin}
        a = alpl(v)
        linf = 1/(1+ a)
        taul = 0.26*(v+50)/qtl
        if (taul<lmin/qtl) {taul=lmin/qtl}
}