A 1000 cell network model for Lateral Amygdala (Kim et al. 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:150288
1000 Cell Lateral Amygdala model for investigation of plasticity and memory storage during Pavlovian Conditioning.
Reference:
1 . Kim D, Paré D, Nair SS (2013) Mechanisms contributing to the induction and storage of Pavlovian fear memories in the lateral amygdala. Learn Mem 20:421-30 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell; Synapse; Dendrite;
Brain Region(s)/Organism: Amygdala;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Hodgkin-Huxley neuron;
Channel(s): I Na,t; I L high threshold; I A; I M; I Sodium; I Calcium; I Potassium; I_AHP; Ca pump;
Gap Junctions:
Receptor(s): AMPA; NMDA; Gaba; Dopaminergic Receptor;
Gene(s):
Transmitter(s): Dopamine; Norephinephrine;
Simulation Environment: NEURON;
Model Concept(s): Synaptic Plasticity; Short-term Synaptic Plasticity; Long-term Synaptic Plasticity; Learning; Neuromodulation;
Implementer(s): Kim, Dongbeom [dk258 at mail.missouri.edu];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; AMPA; NMDA; Gaba; Dopaminergic Receptor; I Na,t; I L high threshold; I A; I M; I Sodium; I Calcium; I Potassium; I_AHP; Ca pump; Dopamine; Norephinephrine;
/
KimEtAl2013
README.txt
bg2inter.mod
bg2pyr.mod
ca.mod *
cadyn.mod
cal2.mod *
capool.mod *
function_TMonitor.mod *
h.mod *
im.mod
interD2pyrD_STFD.mod
interD2pyrDDA_STFD.mod
interD2pyrDDANE_STFD.mod
interD2pyrDNE_STFD.mod
interD2pyrV_STFD.mod
interD2pyrVDA_STFD.mod
interV2pyrD_STFD.mod
interV2pyrDDA_STFD.mod
interV2pyrDDANE_STFD.mod
interV2pyrDNE_STFD.mod
interV2pyrV_STFD.mod
interV2pyrVDA_STFD.mod
kadist.mod *
kaprox.mod
kdrca1.mod
kdrca1DA.mod
kdrinter.mod *
leak.mod *
leakDA.mod *
leakinter.mod *
na3.mod
na3DA.mod
nainter.mod *
pyrD2interD_STFD.mod
pyrD2interV_STFD.mod
pyrD2pyrD_STFD.mod
pyrD2pyrDDA_STFD.mod
pyrD2pyrV_STFD.mod
pyrD2pyrVDA_STFD.mod
pyrV2interD_STFD.mod
pyrV2interV_STFD.mod
pyrV2pyrD_STFD.mod
pyrV2pyrDDA_STFD.mod
pyrV2pyrV_STFD.mod
pyrV2pyrVDA_STFD.mod
sahp.mod
sahpNE.mod
shock2interD.mod
shock2interV.mod
shock2pyrD.mod
shock2pyrV.mod
tone2interD.mod
tone2interDNE.mod
tone2interV.mod
tone2interVNE.mod
tone2pyrD.mod
tone2pyrD_LAdv.mod
tone2pyrDNE.mod
tone2pyrDNE_LAdv.mod
tone2pyrV.mod
tone2pyrV_LAdd.mod
tone2pyrVNE.mod
tone2pyrVNE_LAdd.mod
BgGen.hoc
Cell_list.txt
Cell_type.txt
function_ConnectInternal.hoc
function_ConnectTwoCells.hoc
function_NetStimOR.hoc *
function_TimeMonitor.hoc *
function_ToneGen.hoc
function_ToneSignalGen_Ctx.hoc
function_ToneSignalGen_Th.hoc
interneuron_template.hoc
LA_model_main_file.hoc
LAcells_template.hoc
NM.txt
shock2Idd.txt
shock2Idv.txt
shock2LAdd.txt
shock2LAdv.txt
shockcondi.hoc
Syn_Matrix.txt
tone2Idd.txt
tone2Idd2.txt
tone2Idv.txt
tone2Idv2.txt
tone2LAdd.txt
tone2LAdd2.txt
tone2LAdv.txt
tone2LAdv2.txt
                            
: passive leak current

NEURON {
	SUFFIX leakDA
	NONSPECIFIC_CURRENT il
	RANGE il, el, glbar
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

PARAMETER {
	tone_period = 4000    
	DA_period = 500	
	DA_start = 36000		             : D2R(High Affinity) Dopamine Effect after 6 conditioning trials (15*4000) = 60000)
	DA_stop = 96000
	DA_ext1 = 196000
	DA_ext2 = 212000	
	DA_t1 = 0.8 : 0.9 : 1 :  1 : 0.9           : Amount(%) of DA effect- negative value decreases AP threshold / positive value increases threshold of AP
	DA_period2 = 100
	DA_start2 = 36000		   			: shock Dopamine Effect during shock after 1 conditioning trial
	DA_t2 = .9           				: Amount(%) of DA effect- negative value decreases AP threshold / positive value increases threshold of AP	
	
	glbar = 2.857142857142857e-05  :3.333333e-5 (siemens/cm2) < 0, 1e9 >
	el = -75 (mV)
}

ASSIGNED {
	v (mV)
	il (mA/cm2)
}

BREAKPOINT { 
	il = glbar*(v - el)*DA1(t)*DA2(t)
}
FUNCTION DA1(t) {
	    if (t >= DA_start && t <= DA_stop){ 									: During conditioning
			if ((t/tone_period-floor(t/tone_period)) >= (1-DA_period/tone_period)) {DA1 = DA_t1}
			else if ((t/tone_period-floor(t/tone_period)) == 0) {DA1 = DA_t1}
			else {DA1 = 1}}
		else if (t >= DA_ext1 && t <= DA_ext2){								: During 4trials of Extinction
			if ((t/tone_period-floor(t/tone_period)) >= (1-DA_period/tone_period)) {DA1 = DA_t1}
			else if ((t/tone_period-floor(t/tone_period)) == 0) {DA1 = DA_t1}
			else {DA1 = 1}}		
		else  {DA1 = 1}
	}
FUNCTION DA2(t) {
	    if (t >= DA_start2 && t <= DA_stop){
			if((t/tone_period-floor(t/tone_period)) >= (1-DA_period2/tone_period)) {DA2 = DA_t2}
			else if ((t/tone_period-floor(t/tone_period)) == 0) {DA2 = DA_t2}
			else  {DA2 = 1}}
		else  {DA2 = 1}
	}