A 1000 cell network model for Lateral Amygdala (Kim et al. 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:150288
1000 Cell Lateral Amygdala model for investigation of plasticity and memory storage during Pavlovian Conditioning.
Reference:
1 . Kim D, Paré D, Nair SS (2013) Mechanisms contributing to the induction and storage of Pavlovian fear memories in the lateral amygdala. Learn Mem 20:421-30 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell; Synapse; Dendrite;
Brain Region(s)/Organism: Amygdala;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Hodgkin-Huxley neuron;
Channel(s): I Na,t; I L high threshold; I A; I M; I Sodium; I Calcium; I Potassium; I_AHP; Ca pump;
Gap Junctions:
Receptor(s): AMPA; NMDA; Gaba; Dopaminergic Receptor;
Gene(s):
Transmitter(s): Dopamine; Norephinephrine;
Simulation Environment: NEURON;
Model Concept(s): Synaptic Plasticity; Short-term Synaptic Plasticity; Long-term Synaptic Plasticity; Learning; Neuromodulation;
Implementer(s): Kim, Dongbeom [dk258 at mail.missouri.edu];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; AMPA; NMDA; Gaba; Dopaminergic Receptor; I Na,t; I L high threshold; I A; I M; I Sodium; I Calcium; I Potassium; I_AHP; Ca pump; Dopamine; Norephinephrine;
/
KimEtAl2013
README.txt
bg2inter.mod
bg2pyr.mod
ca.mod *
cadyn.mod
cal2.mod *
capool.mod *
function_TMonitor.mod *
h.mod *
im.mod
interD2pyrD_STFD.mod
interD2pyrDDA_STFD.mod
interD2pyrDDANE_STFD.mod
interD2pyrDNE_STFD.mod
interD2pyrV_STFD.mod
interD2pyrVDA_STFD.mod
interV2pyrD_STFD.mod
interV2pyrDDA_STFD.mod
interV2pyrDDANE_STFD.mod
interV2pyrDNE_STFD.mod
interV2pyrV_STFD.mod
interV2pyrVDA_STFD.mod
kadist.mod *
kaprox.mod
kdrca1.mod
kdrca1DA.mod
kdrinter.mod *
leak.mod *
leakDA.mod *
leakinter.mod *
na3.mod
na3DA.mod
nainter.mod *
pyrD2interD_STFD.mod
pyrD2interV_STFD.mod
pyrD2pyrD_STFD.mod
pyrD2pyrDDA_STFD.mod
pyrD2pyrV_STFD.mod
pyrD2pyrVDA_STFD.mod
pyrV2interD_STFD.mod
pyrV2interV_STFD.mod
pyrV2pyrD_STFD.mod
pyrV2pyrDDA_STFD.mod
pyrV2pyrV_STFD.mod
pyrV2pyrVDA_STFD.mod
sahp.mod
sahpNE.mod
shock2interD.mod
shock2interV.mod
shock2pyrD.mod
shock2pyrV.mod
tone2interD.mod
tone2interDNE.mod
tone2interV.mod
tone2interVNE.mod
tone2pyrD.mod
tone2pyrD_LAdv.mod
tone2pyrDNE.mod
tone2pyrDNE_LAdv.mod
tone2pyrV.mod
tone2pyrV_LAdd.mod
tone2pyrVNE.mod
tone2pyrVNE_LAdd.mod
BgGen.hoc
Cell_list.txt
Cell_type.txt
function_ConnectInternal.hoc
function_ConnectTwoCells.hoc
function_NetStimOR.hoc *
function_TimeMonitor.hoc *
function_ToneGen.hoc
function_ToneSignalGen_Ctx.hoc
function_ToneSignalGen_Th.hoc
interneuron_template.hoc
LA_model_main_file.hoc
LAcells_template.hoc
NM.txt
shock2Idd.txt
shock2Idv.txt
shock2LAdd.txt
shock2LAdv.txt
shockcondi.hoc
Syn_Matrix.txt
tone2Idd.txt
tone2Idd2.txt
tone2Idv.txt
tone2Idv2.txt
tone2LAdd.txt
tone2LAdd2.txt
tone2LAdv.txt
tone2LAdv2.txt
                            
COMMENT

ca.mod
Uses fixed eca instead of GHK eqn

HVA Ca current
Based on Reuveni, Friedman, Amitai and Gutnick (1993) J. Neurosci. 13:
4609-4621.

Author: Zach Mainen, Salk Institute, 1994, zach@salk.edu

ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX ca
	USEION ca READ eca WRITE ica
	RANGE m, h, gca, gbar
	RANGE minf, hinf, mtau, htau
	GLOBAL q10, temp, tadj, vmin, vmax, vshift
}

PARAMETER {
	gbar = 0.1   	(pS/um2)	: 0.12 mho/cm2
	vshift = 0	(mV)		: voltage shift (affects all)

	cao  = 2.5	(mM)	        : external ca concentration
	cai		(mM)
						
	temp = 23	(degC)		: original temp 
	q10  = 2.3			: temperature sensitivity

	v 		(mV)
	dt		(ms)
	celsius		(degC)
	vmin = -120	(mV)
	vmax = 100	(mV)
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
	FARADAY = (faraday) (coulomb)
	R = (k-mole) (joule/degC)
	PI	= (pi) (1)
} 

ASSIGNED {
	ica 		(mA/cm2)
	gca		(pS/um2)
	eca		(mV)
	minf 		hinf
	mtau (ms)	htau (ms)
	tadj
}
 

STATE { m h }

INITIAL { 
	trates(v+vshift)
	m = minf
	h = hinf
}

BREAKPOINT {
        SOLVE states
        gca = tadj*gbar*m*m*h
	ica = (1e-4) * gca * (v - eca)
} 

LOCAL mexp, hexp

PROCEDURE states() {
        trates(v+vshift)      
        m = m + mexp*(minf-m)
        h = h + hexp*(hinf-h)
	VERBATIM
	return 0;
	ENDVERBATIM
}


PROCEDURE trates(v) {  
                      
        LOCAL tinc
        TABLE minf, mexp, hinf, hexp
	DEPEND dt, celsius, temp
	
	FROM vmin TO vmax WITH 199

	rates(v): not consistently executed from here if usetable == 1

        tadj = q10^((celsius - temp)/10)
        tinc = -dt * tadj

        mexp = 1 - exp(tinc/mtau)
        hexp = 1 - exp(tinc/htau)
}


PROCEDURE rates(vm) {  
        LOCAL  a, b

	a = 0.055*(-27 - vm)/(exp((-27-vm)/3.8) - 1)
	b = 0.94*exp((-75-vm)/17)
	
	mtau = 1/(a+b)
	minf = a*mtau

		:"h" inactivation 

	a = 0.000457*exp((-13-vm)/50)
	b = 0.0065/(exp((-vm-15)/28) + 1)

	htau = 1/(a+b)
	hinf = a*htau
}

FUNCTION efun(z) {
	if (fabs(z) < 1e-4) {
		efun = 1 - z/2
	}else{
		efun = z/(exp(z) - 1)
	}
}