Calcium waves and mGluR-dependent synaptic plasticity in CA1 pyr. neurons (Ashhad & Narayanan 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:150551
A morphologically realistic, conductance-based model equipped with kinetic schemes that govern several calcium signalling modules and pathways in CA1 pyramidal neurons
Reference:
1 . Ashhad S, Narayanan R (2013) Quantitative interactions between the A-type K+ current and inositol trisphosphate receptors regulate intraneuronal Ca2+ waves and synaptic plasticity. J Physiol 591:1645-69 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse; Channel/Receptor; Dendrite;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,t; I L high threshold; I T low threshold; I A; I K; Ca pump;
Gap Junctions:
Receptor(s): AMPA; NMDA; mGluR; IP3;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Active Dendrites; Synaptic Plasticity; Signaling pathways; Calcium dynamics; G-protein coupled; Calcium waves;
Implementer(s): Narayanan, Rishikesh [rishi at iisc.ac.in]; Ashhad, Sufyan [soofy at mbu.iisc.ernet.in];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; AMPA; NMDA; mGluR; IP3; I Na,t; I L high threshold; I T low threshold; I A; I K; Ca pump; Glutamate;
/
AshhadNarayanan2013
Readme.html
cal4.mod
Calamp.mod
caltype.mod
camax.mod
cat.mod
ghknmda.mod
ip3dif.mod
kadist.mod *
kaprox.mod *
kdrca1.mod
mglur.mod
na3.mod
nax.mod *
Wghkampa.mod
CalciumWave.hoc
distance.hoc
Fig4F-G.hoc
Fig6C-F.hoc
mosinit.hoc
n123.hoc
n123_all.dis
n123_all.rdis
ObliquePath.hoc
oblique-paths.hoc
parameters.hoc
screenshot4F.png
screenshot4G.png
screenshot6C-F.png
                            
TITLE na3
: Na current for axon. No slow inact.
: M.Migliore Jul. 1997

NEURON {
	SUFFIX nax
	USEION na READ ena WRITE ina
	RANGE  gbar
	GLOBAL minf, hinf, mtau, htau,thinf, qinf
}

PARAMETER {
	gbar = 0.010   	(mho/cm2)	
								
	tha  =  -30	(mV)		: v 1/2 for act	
	qa   = 7.2	(mV)		: act slope (4.5)		
	Ra   = 0.4	(/ms)		: open (v)		
	Rb   = 0.124 	(/ms)		: close (v)		

	thi1  = -45	(mV)		: v 1/2 for inact 	
	thi2  = -45 	(mV)		: v 1/2 for inact 	
	qd   = 1.5	(mV)	        : inact tau slope
	qg   = 1.5      (mV)
	mmin=0.02	
	hmin=0.5			
	q10=2
	Rg   = 0.01 	(/ms)		: inact recov (v) 	
	Rd   = .03 	(/ms)		: inact (v)	

	thinf  = -50 	(mV)		: inact inf slope	
	qinf  = 4 	(mV)		: inact inf slope 

	ena		(mV)            : must be explicitly def. in hoc
	celsius
	v 		(mV)
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
} 

ASSIGNED {
	ina 		(mA/cm2)
	thegna		(mho/cm2)
	minf 		hinf 		
	mtau (ms)	htau (ms) 	
}
 

STATE { m h}

BREAKPOINT {
        SOLVE states METHOD cnexp
        thegna = gbar*m*m*m*h
	ina = thegna * (v - ena)
} 

INITIAL {
	trates(v)
	m=minf  
	h=hinf
}

DERIVATIVE states {   
        trates(v)      
        m' = (minf-m)/mtau
        h' = (hinf-h)/htau
}

PROCEDURE trates(vm) {  
        LOCAL  a, b, qt
        qt=q10^((celsius-24)/10)
	a = trap0(vm,tha,Ra,qa)
	b = trap0(-vm,-tha,Rb,qa)
	mtau = 1/(a+b)/qt
        if (mtau<mmin) {mtau=mmin}
	minf = a/(a+b)

	a = trap0(vm,thi1,Rd,qd)
	b = trap0(-vm,-thi2,Rg,qg)
	htau =  1/(a+b)/qt
        if (htau<hmin) {htau=hmin}
	hinf = 1/(1+exp((vm-thinf)/qinf))
}

FUNCTION trap0(v,th,a,q) {
	if (fabs(v-th) > 1e-6) {
	        trap0 = a * (v - th) / (1 - exp(-(v - th)/q))
	} else {
	        trap0 = a * q
 	}
}