Ih tunes oscillations in an In Silico CA3 model (Neymotin et al. 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:151282
" ... We investigated oscillatory control using a multiscale computer model of hippocampal CA3, where each cell class (pyramidal, basket, and oriens-lacunosum moleculare cells), contained type-appropriate isoforms of Ih. Our model demonstrated that modulation of pyramidal and basket Ih allows tuning theta and gamma oscillation frequency and amplitude. Pyramidal Ih also controlled cross-frequency coupling (CFC) and allowed shifting gamma generation towards particular phases of the theta cycle, effected via Ih’s ability to set pyramidal excitability. ..."
Reference:
1 . Neymotin SA, Hilscher MM, Moulin TC, Skolnick Y, Lazarewicz MT, Lytton WW (2013) Ih tunes theta/gamma oscillations and cross-frequency coupling in an in silico CA3 model. PLoS One 8:e76285 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA3 pyramidal GLU cell; Hippocampus CA3 interneuron basket GABA cell; Hippocampus CA3 stratum oriens lacunosum-moleculare interneuron;
Channel(s): I Na,t; I A; I K; I K,leak; I h; I K,Ca; I Sodium; I Potassium;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA; Glutamate;
Gene(s): HCN1; HCN2;
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON; Python;
Model Concept(s): Oscillations; Brain Rhythms; Conductance distributions; Multiscale;
Implementer(s): Lazarewicz, Maciej [mlazarew at gmu.edu]; Neymotin, Sam [Samuel.Neymotin at nki.rfmh.org];
Search NeuronDB for information about:  Hippocampus CA3 pyramidal GLU cell; Hippocampus CA3 interneuron basket GABA cell; GabaA; AMPA; NMDA; Glutamate; I Na,t; I A; I K; I K,leak; I h; I K,Ca; I Sodium; I Potassium; Gaba; Glutamate;
/
ca3ihdemo
readme.txt
CA3ih.mod
CA3ika.mod
CA3ikdr.mod
CA3ina.mod
caolmw.mod *
HCN1.mod *
icaolmw.mod *
iholmw.mod *
ihstatic.mod *
kcaolmw.mod *
kdrbwb.mod *
misc.mod *
MyExp2SynBB.mod *
MyExp2SynNMDABB.mod *
nafbwb.mod *
stats.mod *
vecst.mod *
aux_fun.inc *
declist.hoc *
decmat.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
geom.py
grvec.hoc *
init.hoc
labels.hoc *
local.hoc *
misc.h *
network.py
nqs.hoc *
nrnoc.hoc *
params.py
pyinit.py *
pywrap.hoc
run.py
sim.py
simctrl.hoc *
stats.hoc *
syncode.hoc *
xgetargs.hoc *
                            
TITLE Ika CA3

UNITS {
  (mA) = (milliamp)
  (mV) = (millivolt)
}
 
NEURON {
  SUFFIX kacurrent
  NONSPECIFIC_CURRENT ika, ikad
  RANGE g, gd, e, ninf, ntau, ndinf, ndtau, linf, ltau
}
 
PARAMETER {
  celsius	(degC)
  g= 0.048	(mho/cm2)
  gd= 0		(mho/cm2)
  e= -90	(mV)
}
 
STATE {
  n
  nd : distal
  l
}
 
ASSIGNED {
  v	(mV)
  ika	(mA/cm2) 
  ikad	(mA/cm2)
  ninf
  ntau  (ms)
  ndinf
  ndtau (ms)
  linf
  ltau	(ms)
}

PROCEDURE iassign () {
  ika=g*n*l*(v-e)
  ikad=gd*nd*l*(v-e)
}
 
BREAKPOINT {
  SOLVE states METHOD cnexp
  iassign()
}
 
DERIVATIVE states { 
  rates(v)
  n'= (ninf- n)/ ntau
  l'= (linf- l)/ ltau
  nd'= (ndinf-nd)/ndtau
}

INITIAL { 
  rates(v)
  n = ninf
  l = linf
  iassign()
}

PROCEDURE rates(v (mV)) {
  LOCAL  a, b
  UNITSOFF
  a = exp(-0.038*(1.5+1/(1+exp(v+40)/5))*(v-11))
  b =	exp(-0.038*(0.825+1/(1+exp(v+40)/5))*(v-11))
  ntau=4*b/(1+a)
  if (ntau<0.1) {ntau=0.1}
  ninf=1/(1+a)
	
  a=exp(-0.038*(1.8+1/(1+exp(v+40)/5))*(v+1))
  b=exp(-0.038*(0.7+1/(1+exp(v+40)/5))*(v+1))
  ndtau=2*b/(1+a)
  if (ndtau<0.1) {ndtau=0.1}
  ndinf=1/(1+a)

  a = exp(0.11*(v+56))
  ltau=0.26*(v+50)
  if (ltau<2) {ltau=2}
  linf=1/(1+a)
  UNITSON
}