Ih tunes oscillations in an In Silico CA3 model (Neymotin et al. 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:151282
" ... We investigated oscillatory control using a multiscale computer model of hippocampal CA3, where each cell class (pyramidal, basket, and oriens-lacunosum moleculare cells), contained type-appropriate isoforms of Ih. Our model demonstrated that modulation of pyramidal and basket Ih allows tuning theta and gamma oscillation frequency and amplitude. Pyramidal Ih also controlled cross-frequency coupling (CFC) and allowed shifting gamma generation towards particular phases of the theta cycle, effected via Ih’s ability to set pyramidal excitability. ..."
Reference:
1 . Neymotin SA, Hilscher MM, Moulin TC, Skolnick Y, Lazarewicz MT, Lytton WW (2013) Ih tunes theta/gamma oscillations and cross-frequency coupling in an in silico CA3 model. PLoS One 8:e76285 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA3 pyramidal GLU cell; Hippocampus CA3 interneuron basket GABA cell; Hippocampus CA3 stratum oriens lacunosum-moleculare interneuron;
Channel(s): I Na,t; I A; I K; I K,leak; I h; I K,Ca; I Sodium; I Potassium;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA; Glutamate;
Gene(s): HCN1; HCN2;
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON; Python;
Model Concept(s): Oscillations; Brain Rhythms; Conductance distributions; Multiscale;
Implementer(s): Lazarewicz, Maciej [mlazarew at gmu.edu]; Neymotin, Sam [Samuel.Neymotin at nki.rfmh.org];
Search NeuronDB for information about:  Hippocampus CA3 pyramidal GLU cell; Hippocampus CA3 interneuron basket GABA cell; GabaA; AMPA; NMDA; Glutamate; I Na,t; I A; I K; I K,leak; I h; I K,Ca; I Sodium; I Potassium; Gaba; Glutamate;
/
ca3ihdemo
readme.txt
CA3ih.mod
CA3ika.mod
CA3ikdr.mod
CA3ina.mod
caolmw.mod *
HCN1.mod *
icaolmw.mod *
iholmw.mod *
ihstatic.mod *
kcaolmw.mod *
kdrbwb.mod *
misc.mod *
MyExp2SynBB.mod *
MyExp2SynNMDABB.mod *
nafbwb.mod *
stats.mod *
vecst.mod *
aux_fun.inc *
declist.hoc *
decmat.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
geom.py
grvec.hoc *
init.hoc
labels.hoc *
local.hoc *
misc.h *
network.py
nqs.hoc *
nrnoc.hoc *
params.py
pyinit.py *
pywrap.hoc
run.py
sim.py
simctrl.hoc *
stats.hoc *
syncode.hoc *
xgetargs.hoc *
                            
: $Id: HCN1.mod,v 1.4 2013/01/02 15:01:55 samn Exp $ 

TITLE HCN1 

UNITS {
  (mA) = (milliamp)
  (mV) = (millivolt)
}
 
NEURON {
  SUFFIX HCN1
  NONSPECIFIC_CURRENT ih
  RANGE gbar, g, e, v50, htau, hinf
  RANGE gfactor, htaufactor
}
 
PARAMETER {
  celsius	(degC)
  gbar = 0.0001	(mho/cm2)
  e= -30	(mV)
  v50= -73	(mV)
  gfactor = 1
  htaufactor = 4.78
}
 
STATE {
  h
}
 
ASSIGNED {
  ih	  (mA/cm2) 
  hinf
  htau    (ms)
  v	  (mV)
  g       (mho/cm2)
}

PROCEDURE giassign () { 
  : ih=g*h*(v-e)*gfactor 
  g = gbar*h*gfactor
  ih = g*(v-e)
}
 
BREAKPOINT {
  SOLVE states METHOD cnexp
  giassign()
}
 
DERIVATIVE states { 
  rates(v)
  h'= (hinf- h)/ htau
}

INITIAL { 
  rates(v)
  h = hinf
  giassign()
}

PROCEDURE rates(v (mV)) {
  UNITSOFF
  : HCN1
  hinf = 1/(1+exp(0.151*(v-v50)))
  htau = htaufactor*exp((0.033*(v+75)))/(0.011*(1+exp(0.083*(v+75))))
  UNITSON
}