Ih tunes oscillations in an In Silico CA3 model (Neymotin et al. 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:151282
" ... We investigated oscillatory control using a multiscale computer model of hippocampal CA3, where each cell class (pyramidal, basket, and oriens-lacunosum moleculare cells), contained type-appropriate isoforms of Ih. Our model demonstrated that modulation of pyramidal and basket Ih allows tuning theta and gamma oscillation frequency and amplitude. Pyramidal Ih also controlled cross-frequency coupling (CFC) and allowed shifting gamma generation towards particular phases of the theta cycle, effected via Ih’s ability to set pyramidal excitability. ..."
Reference:
1 . Neymotin SA, Hilscher MM, Moulin TC, Skolnick Y, Lazarewicz MT, Lytton WW (2013) Ih tunes theta/gamma oscillations and cross-frequency coupling in an in silico CA3 model. PLoS One 8:e76285 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA3 pyramidal GLU cell; Hippocampus CA3 interneuron basket GABA cell; Hippocampus CA3 stratum oriens lacunosum-moleculare interneuron;
Channel(s): I Na,t; I A; I K; I K,leak; I h; I K,Ca; I Sodium; I Potassium;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA; Glutamate;
Gene(s): HCN1; HCN2;
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON; Python;
Model Concept(s): Oscillations; Brain Rhythms; Conductance distributions; Multiscale;
Implementer(s): Lazarewicz, Maciej [mlazarew at gmu.edu]; Neymotin, Sam [Samuel.Neymotin at nki.rfmh.org];
Search NeuronDB for information about:  Hippocampus CA3 pyramidal GLU cell; Hippocampus CA3 interneuron basket GABA cell; GabaA; AMPA; NMDA; Glutamate; I Na,t; I A; I K; I K,leak; I h; I K,Ca; I Sodium; I Potassium; Gaba; Glutamate;
/
ca3ihdemo
readme.txt
CA3ih.mod
CA3ika.mod
CA3ikdr.mod
CA3ina.mod
caolmw.mod *
HCN1.mod *
icaolmw.mod *
iholmw.mod *
ihstatic.mod *
kcaolmw.mod *
kdrbwb.mod *
misc.mod *
MyExp2SynBB.mod *
MyExp2SynNMDABB.mod *
nafbwb.mod *
stats.mod *
vecst.mod *
aux_fun.inc *
declist.hoc *
decmat.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
geom.py
grvec.hoc *
init.hoc
labels.hoc *
local.hoc *
misc.h *
network.py
nqs.hoc *
nrnoc.hoc *
params.py
pyinit.py *
pywrap.hoc
run.py
sim.py
simctrl.hoc *
stats.hoc *
syncode.hoc *
xgetargs.hoc *
                            
# $Id: run.py,v 1.56 2012/09/20 14:06:03 samn Exp $

from pyinit import *
from geom import *
# from network import *
# from params import *
import sys
try:
    import filt
except:
    print("Couldn't import filt routines used in gethilbnqs")

# sets up external inputs
if net.noise:
    net.set_noise_inputs(h.tstop) #h.tstop sets duration of inpus for make noise case

# handler for printing out time during simulation run
def fi():
    for i in range(0,int(h.tstop),100):
        h.cvode.event(i, "print " + str(i))

fih = h.FInitializeHandler(1, fi)

# initialize random # generators of NetStims - forces it at beginning of each sim
def myInitNetStims():
    net.init_NetStims()

fihns = h.FInitializeHandler(0, myInitNetStims)

# save LFP with current pyramidal cell voltages
_svNUM = 0
def saveLFPInterm (fbase):
    global _svNUM
    fout = fbase + "_svNUM_" + str(_svNUM) + "_lfp.vec"
    print("time is " , h.t, " saving LFP to " , fout)
    net.calc_lfp()
    mysvvec(fout,net.vlfp)
    net.clear_mem()
    _svNUM += 1

# setup events to save LFP intermittently
_svFBase = "./tmp_"
_svINC = 1000
def setSaveLFPEvents ():
    global _svNUM
    _svNUM = 0
    stre = "nrnpython(\"saveLFPInterm(_svFBase)\")"
    for tt in range(_svINC,int(h.tstop),_svINC):
        h.cvode.event(tt,stre)
    h.cvode.event(h.tstop,stre)

# example to save LFP intermittently:
#  fisv = h.FInitializeHandler(0, setSaveLFPEvents)

#save vec to fn (fn is path)
def mysvvec(fn,vec):
    fp = h.File()
    fp.wopen(fn)
    if fp.isopen():
        vec.vwrite(fp)
        fp.close()
    else:
        print("savevec ERR: couldn't open " + fn)

#run a sim and save data
def minrunsv (simstr,tstop=1200,dt=0.1,savevolt=False):
    h.tstop=tstop
    h.dt=dt
    h.run()
    print("saving output data")
    net.calc_lfp()
    fn = "./data/"+simstr+"_lfp.vec"
    mysvvec(fn,net.vlfp)
    net.setsnq() # make NQS with spike times
    fn = "./data/"+simstr+"_snq.nqs"
    net.snq.sv(fn)
    if savevolt:
        nqv = net.getnqvolt()
        nqv.sv('./data/'+simstr+'_nqvolt.nqs')

#read a Vector from file, fn is file-path, vec is a Vector
def myrdvec(fn,vec):
    fp=h.File()
    fp.ropen(fn)
    if not fp.isopen():
        print("myrdvec ERRA: Couldn't open " + fn)
        return False
    vec.vread(fp)
    fp.close()
    return True

# concat a series of LFPs - fbase is base of filename
def catlfp (fbase,svn):
    vlfp, vtmp = h.Vector(), h.Vector()
    for i in range(svn):
        fin = fbase + "_svNUM_" + str(i) + "_lfp.vec"
        if myrdvec(fin,vtmp): vlfp.append(vtmp)
    return vlfp

#load data from minrunsv into net.vlfp,net.snq
def loadminrundat(simstr,datadir="./data/",rdvolt=False):
    fs = datadir+simstr+"_lfp.vec"
    try:
        net.vlfp.resize(0)
    except:
        net.vlfp = h.Vector()
        myrdvec(fs,net.vlfp)
    fs = datadir+simstr+"_snq.nqs"
    try:
        h.nqsdel(net.snq)
    except:
        pass
    try:
        net.snq=h.NQS(fs)
    except:
        print("loadminrundat ERRB: couldn't read snq from " + fs)
    net.snq.verbose=0 # next, copy snq into vectors so can plot with net.rasterplot
    for po in net.cells:
        for i in range(len(po.lidvec)):
            ID = po.cell[i].id
            po.lidvec[i].resize(0)
            po.ltimevec[i].resize(0)
            if net.snq.select("id",ID):
                po.lidvec[i].copy(net.snq.getcol("id"))
                po.ltimevec[i].copy(net.snq.getcol("t"))
    net.snq.verbose=1
    if rdvolt:
        try:
            h.nqsdel(net.nqv)
        except:
            pass
        fs = datadir+simstr+'_nqvolt.nqs'
        try:
            net.nqv=h.NQS(fs)
        except:
            print("loadminrundat ERRC: couldn't read nqvolt from " + fs)

def myrast(spikes,times,sz=12):
    if h.g[0] == None:
        h.gg()
    spikes.mark(h.g[0],times,"O",sz,1,1)
    h.g[0].exec_menu("View = plot")

############################
#   setup multithreading   #
pc = h.ParallelContext()   #
pc.nthread(32)             #
############################
####################################################################################################