Ih tunes oscillations in an In Silico CA3 model (Neymotin et al. 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:151282
" ... We investigated oscillatory control using a multiscale computer model of hippocampal CA3, where each cell class (pyramidal, basket, and oriens-lacunosum moleculare cells), contained type-appropriate isoforms of Ih. Our model demonstrated that modulation of pyramidal and basket Ih allows tuning theta and gamma oscillation frequency and amplitude. Pyramidal Ih also controlled cross-frequency coupling (CFC) and allowed shifting gamma generation towards particular phases of the theta cycle, effected via Ih’s ability to set pyramidal excitability. ..."
Reference:
1 . Neymotin SA, Hilscher MM, Moulin TC, Skolnick Y, Lazarewicz MT, Lytton WW (2013) Ih tunes theta/gamma oscillations and cross-frequency coupling in an in silico CA3 model. PLoS One 8:e76285 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA3 pyramidal GLU cell; Hippocampus CA3 interneuron basket GABA cell; Hippocampus CA3 stratum oriens lacunosum-moleculare interneuron;
Channel(s): I Na,t; I A; I K; I K,leak; I h; I K,Ca; I Sodium; I Potassium;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA; Glutamate;
Gene(s): HCN1; HCN2;
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON; Python;
Model Concept(s): Oscillations; Brain Rhythms; Conductance distributions; Multiscale;
Implementer(s): Lazarewicz, Maciej [mlazarew at gmu.edu]; Neymotin, Sam [Samuel.Neymotin at nki.rfmh.org];
Search NeuronDB for information about:  Hippocampus CA3 pyramidal GLU cell; Hippocampus CA3 interneuron basket GABA cell; GabaA; AMPA; NMDA; Glutamate; I Na,t; I A; I K; I K,leak; I h; I K,Ca; I Sodium; I Potassium; Gaba; Glutamate;
/
ca3ihdemo
readme.txt
CA3ih.mod
CA3ika.mod
CA3ikdr.mod
CA3ina.mod
caolmw.mod *
HCN1.mod *
icaolmw.mod *
iholmw.mod *
ihstatic.mod *
kcaolmw.mod *
kdrbwb.mod *
misc.mod *
MyExp2SynBB.mod *
MyExp2SynNMDABB.mod *
nafbwb.mod *
stats.mod *
vecst.mod *
aux_fun.inc *
declist.hoc *
decmat.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
geom.py
grvec.hoc *
init.hoc
labels.hoc *
local.hoc *
misc.h *
network.py
nqs.hoc *
nrnoc.hoc *
params.py
pyinit.py *
pywrap.hoc
run.py
sim.py
simctrl.hoc *
stats.hoc *
syncode.hoc *
xgetargs.hoc *
                            
: $Id: nafbwb.mod,v 1.4 2010/12/13 21:35:08 samn Exp $ 
COMMENT

//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//
// NOTICE OF COPYRIGHT AND OWNERSHIP OF SOFTWARE
//
// Copyright 2007, The University Of Pennsylvania
// 	School of Engineering & Applied Science.
//   All rights reserved.
//   For research use only; commercial use prohibited.
//   Distribution without permission of Maciej T. Lazarewicz not permitted.
//   mlazarew@seas.upenn.edu
//
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ENDCOMMENT

UNITS {
  (mA) = (milliamp)
  (mV) = (millivolt)
  (mS) = (millisiemens)
}

NEURON {
  SUFFIX Nafbwb
  USEION na WRITE ina
  RANGE phih
  RANGE gna, ena, taoh : testing
}
	
PARAMETER {
  gna  = 35 (mS/cm2)
  ena  = 55 (mV)
  phih = 5
}
    
ASSIGNED {
  v       (mV)
  ina     (mA/cm2)
  minf    (1)
  hinf    (1)
  taoh    (ms)
  celsius (degC)
}

STATE { h }

PROCEDURE iassign () { ina = (1e-3) * gna * minf^3 * h * (v-ena) }

INITIAL {
  rates(v)
  h = hinf
  iassign()
}

BREAKPOINT {
  SOLVE states METHOD cnexp	
  iassign()
}

DERIVATIVE states { 
  rates(v)
  h' = (hinf-h)/taoh
}

PROCEDURE rates(v(mV)) { LOCAL am, bm, ah, bh, q10
    
  q10  = phih:^((celsius-27.0(degC))/10.0(degC))	
    
  am   = fun3(v,  -35, -0.1,    -10)
  bm   = fun1(v,  -60,  4,      -18) 
  minf = am/(am+bm)
 
  ah   = fun1(v,  -58,    0.07,  -20)
  bh   = fun2(v,  -28,    1,     -10)
  hinf = ah/(ah+bh)
  taoh = 1./((ah+bh)*q10)
}

INCLUDE "aux_fun.inc"