Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells (Lee et al. 2014)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:153280
This detailed microcircuit model explores the network level effects of sublayer specific connectivity in the mouse CA1. The differences in strengths and numbers of synapses between PV+ basket cells and either superficial sublayer or deep sublayer pyramidal cells enables a routing of inhibition from superficial to deep pyramidal cells. At the network level of this model, the effects become quite prominent when one compares the effect on firing rates when either the deep or superficial pyramidal cells receive a selective increase in excitation.
Reference:
1 . Lee SH, Marchionni I, Bezaire M, Varga C, Danielson N, Lovett-Barron M, Losonczy A, Soltesz I (2014) Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells. Neuron 82:1129-44 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA1 basket cell;
Channel(s): I Sodium; I Calcium; I Potassium;
Gap Junctions:
Receptor(s): GabaA; Glutamate;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Detailed Neuronal Models; Connectivity matrix; Laminar Connectivity;
Implementer(s): Bezaire, Marianne [mariannejcase at gmail.com];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; GabaA; Glutamate; I Sodium; I Calcium; I Potassium;
/
superdeep
cells
connectivity
datasets
jobscripts
setupfiles
stimulation
README.txt
ch_CavL.mod
ch_CavLZ.mod
ch_CavN.mod
ch_CavT.mod
ch_HCNp.mod
ch_KCaS.mod
ch_Kdrfast.mod
ch_Kdrp.mod
ch_Kdrslow.mod
ch_KvA.mod
ch_KvAdistp.mod
ch_KvAproxp.mod
ch_KvCaB.mod
ch_leak.mod
ch_Navp.mod
ch_NavPVBC.mod
iconc_Ca.mod
iconc_CaZ.mod
MyExp2Sid.mod
MyExp2Sidnw.mod *
mynetstim.mod *
repeatconn.mod
hg_diff.out *
hg_status.out *
ModelDB Quick Start Guide.pdf
modelview.hoc
superdeep.hoc
vercomment.txt *
version.txt *
                            
TITLE L-type calcium channel

COMMENT
L-Type Ca2+ channel
From: Migliore ?
Updates:
20100910-MJCASE-documented
ENDCOMMENT

VERBATIM
#include <stdlib.h> /* 	Include this library so that the following
						(innocuous) warning does not appear:
						 In function '_thread_cleanup':
						 warning: incompatible implicit declaration of 
						          built-in function 'free'  */
ENDVERBATIM

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(molar) = (1/liter)
	(mM) = (millimolar)
	FARADAY = 96520 (coul)
	R = 8.3134 (joule/degC)
	KTOMV = .0853 (mV/degC)
}

PARAMETER {
	v (mV)
      celsius (degC) : temperature - set in hoc; default is 6.3
	gmax		 (mho/cm2)
	ki=.001 (mM)
	cai (mM)
	cao (mM)
        tfa=1
}


NEURON {
	SUFFIX ch_CavLZ
	USEION ca READ cai, cao, eca WRITE ica VALENCE 2 
    RANGE gmax, cai, ica, eca
 	RANGE myi
    GLOBAL minf,mtau	: neither of these are thread safe
    THREADSAFE
}

STATE {
	m
}

ASSIGNED {
	ica (mA/cm2)
        g (mho/cm2)
        minf
        mtau   (ms)
	eca (mV)   
	myi (mA/cm2)

}

INITIAL {
	rate(v)
	m = minf
	VERBATIM
	cai=_ion_cai;
	ENDVERBATIM
}

BREAKPOINT {
	SOLVE state METHOD cnexp
	g = gmax*m*m*h2(cai)
	ica = g*ghk(v,cai,cao)
	myi = ica
}

FUNCTION h2(cai(mM)) {
	h2 = ki/(ki+cai)
}

FUNCTION ghk(v(mV), ci(mM), co(mM)) (mV) {
        LOCAL nu,f

        f = KTF(celsius)/2
        nu = v/f
        ghk=-f*(1. - (ci/co)*exp(nu))*efun(nu)
}

FUNCTION KTF(celsius (DegC)) (mV) {
        KTF = ((25./293.15)*(celsius + 273.15))
}


FUNCTION efun(z) {
	if (fabs(z) < 1e-4) {
		efun = 1 - z/2
	}else{
		efun = z/(exp(z) - 1)
	}
}

FUNCTION alp(v(mV)) (1/ms) {
	TABLE FROM -150 TO 150 WITH 200
	alp = 15.69*(-1.0*v+81.5)/(exp((-1.0*v+81.5)/10.0)-1.0)
}

FUNCTION bet(v(mV)) (1/ms) {
	TABLE FROM -150 TO 150 WITH 200
	bet = 0.29*exp(-v/10.86)
}

DERIVATIVE state {  
        rate(v)
        m' = (minf - m)/mtau
}

PROCEDURE rate(v (mV)) { :callable from hoc
        LOCAL a
        a = alp(v)
        mtau = 1/(tfa*(a + bet(v)))
        minf = tfa*a*mtau
}