Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells (Lee et al. 2014)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:153280
This detailed microcircuit model explores the network level effects of sublayer specific connectivity in the mouse CA1. The differences in strengths and numbers of synapses between PV+ basket cells and either superficial sublayer or deep sublayer pyramidal cells enables a routing of inhibition from superficial to deep pyramidal cells. At the network level of this model, the effects become quite prominent when one compares the effect on firing rates when either the deep or superficial pyramidal cells receive a selective increase in excitation.
Reference:
1 . Lee SH, Marchionni I, Bezaire M, Varga C, Danielson N, Lovett-Barron M, Losonczy A, Soltesz I (2014) Parvalbumin-positive basket cells differentiate among hippocampal pyramidal cells. Neuron 82:1129-44 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA1 basket cell;
Channel(s): I Sodium; I Calcium; I Potassium;
Gap Junctions:
Receptor(s): GabaA; Glutamate;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Detailed Neuronal Models; Connectivity matrix; Laminar Connectivity;
Implementer(s): Bezaire, Marianne [mariannejcase at gmail.com];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; GabaA; Glutamate; I Sodium; I Calcium; I Potassium;
/
superdeep
cells
connectivity
datasets
jobscripts
setupfiles
stimulation
README.txt
ch_CavL.mod
ch_CavLZ.mod
ch_CavN.mod
ch_CavT.mod
ch_HCNp.mod
ch_KCaS.mod
ch_Kdrfast.mod
ch_Kdrp.mod
ch_Kdrslow.mod
ch_KvA.mod
ch_KvAdistp.mod
ch_KvAproxp.mod
ch_KvCaB.mod
ch_leak.mod
ch_Navp.mod
ch_NavPVBC.mod
iconc_Ca.mod
iconc_CaZ.mod
MyExp2Sid.mod
MyExp2Sidnw.mod *
mynetstim.mod *
repeatconn.mod
hg_diff.out *
hg_status.out *
ModelDB Quick Start Guide.pdf
modelview.hoc
superdeep.hoc
vercomment.txt *
version.txt *
                            
TITLE Kdrfast.mod  
 
COMMENT
	Fast delayed rectifier K+ currents: Yuen and Durand, 1991:
	They couldn't quite fit the fast delayed rectifier (of the squid axon?  ?),
	 so they called it just the fast potassium conductance. Not sure what all it represents anymore.
	Aradi shifted the voltage dependence by 16 mV - don't know why.
	Someone else shifted it by 65 as compared to the Aradi & Holmes paper. don't know why...
ENDCOMMENT

VERBATIM
#include <stdlib.h> /* 	Include this library so that the following
						(innocuous) warning does not appear:
						 In function '_thread_cleanup':
						 warning: incompatible implicit declaration of 
						          built-in function 'free'  */
ENDVERBATIM
 
UNITS {
	(mA) =(milliamp)
	(mV) =(millivolt)
	(uF) = (microfarad)
	(molar) = (1/liter)
	(nA) = (nanoamp)
	(mM) = (millimolar)
	(um) = (micron)
	FARADAY = 96520 (coul)
	R = 8.3134	(joule/degC)
}
 
NEURON { 
	SUFFIX ch_Kdrfast 
	USEION k READ ek WRITE ik VALENCE 1
	RANGE g, gmax, ninf, ntau, ik
	RANGE myi
	THREADSAFE
}
 
PARAMETER {
	v (mV) 
	celsius (degC) : temperature - set in hoc; default is 6.3
	dt (ms) 

	ek  (mV)
	gmax (mho/cm2)
}
 
STATE {
	n	
}
 
ASSIGNED {		     
	g (mho/cm2)
	ik (mA/cm2)
	ninf
	ntau (ms)
	nexp
	myi (mA/cm2)
} 

BREAKPOINT {
	SOLVE states
	g = gmax*n*n*n*n
	ik = g*(v-ek)
	myi =  ik
}
 
UNITSOFF
 
INITIAL {
	trates(v)

	n = ninf
}

PROCEDURE states() {	:Computes state variables m, h, and n 
	trates(v)	:      at the current v and dt.       
	n = n + nexp*(ninf-n)
}
 
LOCAL q10
PROCEDURE rates(v) {  :Computes rate and other constants at current v.
                      :Call once from HOC to initialize inf at resting v.
	LOCAL  alpha, beta, sum
	:q10 = 3^((celsius - 6.3)/10)
	q10 = 3^((celsius - 34)/10)
		
	:"nf" fKDR activation system
	alpha = -0.07*vtrap((v+65-47),-6)
	beta = 0.264/exp((v+65-22)/40)
	sum = alpha+beta        
	ntau = 1/sum
	ninf = alpha/sum	
}
 
PROCEDURE trates(v) {  :Computes rate and other constants at current v.
                      :Call once from HOC to initialize inf at resting v.
	LOCAL tinc
	TABLE ninf, nexp, ntau
	DEPEND dt, celsius
	FROM -100 TO 100 WITH 200
						   
	rates(v)	: not consistently executed from here if usetable_hh == 1
	: so don't expect the tau values to be tracking along with
	: the inf values in hoc

	tinc = -dt * q10
	nexp = 1 - exp(tinc/ntau)
}
 
FUNCTION vtrap(x,y) {  :Traps for 0 in denominator of rate eqns.
        if (fabs(x/y) < 1e-6) {
                vtrap = y*(1 - x/y/2)
        }else{  
                vtrap = x/(exp(x/y) - 1)
        }
}
 
UNITSON