Leech Heart (HE) Motor Neuron conductances contributions to NN activity (Lamb & Calabrese 2013)

 Download zip file 
Help downloading and running models
Accession:153355
"... To explore the relationship between conductances, and in particular how they influence the activity of motor neurons in the well characterized leech heartbeat system, we developed a new multi-compartmental Hodgkin-Huxley style leech heart motor neuron model. To do so, we evolved a population of model instances, which differed in the density of specific conductances, capable of achieving specific output activity targets given an associated input pattern. ... We found that the strengths of many conductances, including those with differing dynamics, had strong partial correlations and that these relationships appeared to be linked by their influence on heart motor neuron activity. Conductances that had positive correlations opposed one another and had the opposite effects on activity metrics when perturbed whereas conductances that had negative correlations could compensate for one another and had similar effects on activity metrics. "
Reference:
1 . Lamb DG, Calabrese RL (2013) Correlated conductance parameters in leech heart motor neurons contribute to motor pattern formation. PLoS One 8:e79267 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Leech;
Cell Type(s): Leech heart motor neuron (HE);
Channel(s): I Na,p; I A; I K; I K,leak; I K,Ca; I Sodium; I Calcium; I Na, leak;
Gap Junctions: Gap junctions;
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: GENESIS;
Model Concept(s): Action Potential Initiation; Activity Patterns; Bursting; Temporal Pattern Generation; Detailed Neuronal Models; Parameter sensitivity; Conductance distributions;
Implementer(s): Lamb, Damon [Damon.Lamb at neurology.ufl.edu];
Search NeuronDB for information about:  I Na,p; I A; I K; I K,leak; I K,Ca; I Sodium; I Calcium; I Na, leak;
/
LambCalabrese2013
lgenesis-noX
neurokit
prototypes
README
camit.p
compt_chop.g *
compt_chop.g.bu *
defaults.g *
defaults.g.bu *
hot *
Neurokit.g *
Neurokit.g.bu *
NEURON.g *
NEURON.g.bu *
newcamit.p
synactivator.g *
synactivator.g.bu *
userprefs.g *
userprefs.g.bu *
xall.g *
xall.g.bu *
xcell_funcs.g *
xcell_funcs.g.bu *
xchannel_funcs.g *
xchannel_funcs.g.bu *
xgeom.g *
xgeom.g.bu *
xgraph_funcs.g *
xgraph_funcs.g.bu *
xicons.g *
xicons.g.bu *
xout_funcs.g *
xout_funcs.g.bu *
xrun.g *
xrun.g.bu *
xselect.g *
xselect.g.bu *
xstartup.g *
xstartup.g.bu *
xtitle.g *
xtitle.g.bu *
                            
//genesis

include X1compat
include xstartup 

include xout_funcs 
include xlib 
include xgeom 
include xgraph_funcs 
include xcompt_funcs 
include xchannel_funcs 
include xcell_funcs 
include xselect 
include xrun 
include xtitle 
include xicons 

do_title_bar
create_lib_infrastructure
create_lib compt_lib
str name
foreach name ({el /library/#})
	copy_to_lib compt_lib {name} 0
end

do_xselect_funcs
do_xcompt_funcs
do_xcell_funcs
do_xchannel_funcs
do_xcell_run_control

xshow /title_bar