Olfactory bulb microcircuits model with dual-layer inhibition (Gilra & Bhalla 2015)

 Download zip file 
Help downloading and running models
Accession:153574
A detailed network model of the dual-layer dendro-dendritic inhibitory microcircuits in the rat olfactory bulb comprising compartmental mitral, granule and PG cells developed by Aditya Gilra, Upinder S. Bhalla (2015). All cell morphologies and network connections are in NeuroML v1.8.0. PG and granule cell channels and synapses are also in NeuroML v1.8.0. Mitral cell channels and synapses are in native python.
Reference:
1 . Gilra A, Bhalla US (2015) Bulbar microcircuit model predicts connectivity and roles of interneurons in odor coding. PLoS One 10:e0098045 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron periglomerular GABA cell; Olfactory bulb main interneuron granule MC GABA cell;
Channel(s): I A; I h; I K,Ca; I Sodium; I Calcium; I Potassium;
Gap Junctions:
Receptor(s): AMPA; NMDA; Gaba;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: Python; MOOSE/PyMOOSE;
Model Concept(s): Sensory processing; Sensory coding; Markov-type model; Olfaction;
Implementer(s): Bhalla, Upinder S [bhalla at ncbs.res.in]; Gilra, Aditya [aditya_gilra -at- yahoo -period- com];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron periglomerular GABA cell; Olfactory bulb main interneuron granule MC GABA cell; AMPA; NMDA; Gaba; I A; I h; I K,Ca; I Sodium; I Calcium; I Potassium; Gaba; Glutamate;
/
olfactory-bulb-gilra-bhalla
cells
PG_nrn
readme.txt *
hpg.mod *
kamt.mod *
kdrmt.mod *
naxn.mod *
nmdanetOB.mod *
TCa_d.mod *
coeff-table.txt *
forfig3.hoc *
gc.hoc *
Level2.xml
mitral.hoc *
mitral_davison2007_neurml_L1.xml
mod_func.c
mosinit.hoc *
nrnmech.dll
PGsimple_aditya2010_neuroML_L1_L2.xml
PGTest_nrn.py
                            
TITLE simple NMDA receptors

: Modified from the original AMPA.mod, M.Migliore Jan 2003
: A weight of 0.0035 gives a peak conductance of 1nS in 0Mg

COMMENT
-----------------------------------------------------------------------------

	Simple model for glutamate AMPA receptors
	=========================================

  - FIRST-ORDER KINETICS, FIT TO WHOLE-CELL RECORDINGS

    Whole-cell recorded postsynaptic currents mediated by AMPA/Kainate
    receptors (Xiang et al., J. Neurophysiol. 71: 2552-2556, 1994) were used
    to estimate the parameters of the present model; the fit was performed
    using a simplex algorithm (see Destexhe et al., J. Computational Neurosci.
    1: 195-230, 1994).

  - SHORT PULSES OF TRANSMITTER (0.3 ms, 0.5 mM)

    The simplified model was obtained from a detailed synaptic model that 
    included the release of transmitter in adjacent terminals, its lateral 
    diffusion and uptake, and its binding on postsynaptic receptors (Destexhe
    and Sejnowski, 1995).  Short pulses of transmitter with first-order
    kinetics were found to be the best fast alternative to represent the more
    detailed models.

  - ANALYTIC EXPRESSION

    The first-order model can be solved analytically, leading to a very fast
    mechanism for simulating synapses, since no differential equation must be
    solved (see references below).



References

   Destexhe, A., Mainen, Z.F. and Sejnowski, T.J.  An efficient method for
   computing synaptic conductances based on a kinetic model of receptor binding
   Neural Computation 6: 10-14, 1994.  

   Destexhe, A., Mainen, Z.F. and Sejnowski, T.J. Synthesis of models for
   excitable membranes, synaptic transmission and neuromodulation using a 
   common kinetic formalism, Journal of Computational Neuroscience 1: 
   195-230, 1994.


-----------------------------------------------------------------------------
ENDCOMMENT



NEURON {
	POINT_PROCESS nmdanet
	RANGE R, g, mg
	NONSPECIFIC_CURRENT i
	GLOBAL Cdur, Alpha, Beta, Erev, Rinf, Rtau
}
UNITS {
	(nA) = (nanoamp)
	(mV) = (millivolt)
	(umho) = (micromho)
	(mM) = (milli/liter)
}

PARAMETER {

	Cdur	= 1		(ms)	: transmitter duration (rising phase)
	Alpha	= 0.35		(/ms)	: forward (binding) rate
	Beta	= 0.035		(/ms)	: backward (unbinding) rate
:	Alpha	= 0.072		(/ms)	: forward (binding) rate
:	Beta	= 0.0066		(/ms)	: backward (unbinding) rate
	Erev	= 0	(mV)		: reversal potential
	mg	= 1    (mM)		: external magnesium concentration
}


ASSIGNED {
	v		(mV)		: postsynaptic voltage
	i 		(nA)		: current = g*(v - Erev)
	g 		(umho)		: conductance
	Rinf				: steady state channels open
	Rtau		(ms)		: time constant of channel binding
	synon
}

STATE {Ron Roff}

INITIAL {
	Rinf = Alpha / (Alpha + Beta)
	Rtau = 1 / (Alpha + Beta)
	synon = 0
}

BREAKPOINT {
	SOLVE release METHOD cnexp
	g = mgblock(v)*(Ron + Roff)*1(umho)
	i = g*(v - Erev)		
}

DERIVATIVE release {
	Ron' = (synon*Rinf - Ron)/Rtau
	Roff' = -Beta*Roff
}

: following supports both saturation from single input and
: summation from multiple inputs
: if spike occurs during CDur then new off time is t + CDur
: ie. transmitter concatenates but does not summate
: Note: automatic initialization of all reference args to 0 except first


FUNCTION mgblock(v(mV)) {
	TABLE 
	DEPEND mg
	FROM -140 TO 80 WITH 1000

	: from Jahr & Stevens

	mgblock = 1 / (1 + exp(0.062 (/mV) * -v) * (mg / 3.57 (mM)))
}


NET_RECEIVE(weight, on, nspike, r0, t0 (ms)) {
	: flag is an implicit argument of NET_RECEIVE and  normally 0
        if (flag == 0) { : a spike, so turn on if not already in a Cdur pulse
		nspike = nspike + 1
		if (!on) {
			r0 = r0*exp(-Beta*(t - t0))
			t0 = t
			on = 1
			synon = synon + weight
			state_discontinuity(Ron, Ron + r0)
			state_discontinuity(Roff, Roff - r0)
		}
		: come again in Cdur with flag = current value of nspike
		net_send(Cdur, nspike)
        }
	if (flag == nspike) { : if this associated with last spike then turn off
		r0 = weight*Rinf + (r0 - weight*Rinf)*exp(-(t - t0)/Rtau)
		t0 = t
		synon = synon - weight
		state_discontinuity(Ron, Ron - r0)
		state_discontinuity(Roff, Roff + r0)
		on = 0
	}
}