Olfactory bulb microcircuits model with dual-layer inhibition (Gilra & Bhalla 2015)

 Download zip file 
Help downloading and running models
Accession:153574
A detailed network model of the dual-layer dendro-dendritic inhibitory microcircuits in the rat olfactory bulb comprising compartmental mitral, granule and PG cells developed by Aditya Gilra, Upinder S. Bhalla (2015). All cell morphologies and network connections are in NeuroML v1.8.0. PG and granule cell channels and synapses are also in NeuroML v1.8.0. Mitral cell channels and synapses are in native python.
Reference:
1 . Gilra A, Bhalla US (2015) Bulbar microcircuit model predicts connectivity and roles of interneurons in odor coding. PLoS One 10:e0098045 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron periglomerular GABA cell; Olfactory bulb main interneuron granule MC GABA cell;
Channel(s): I A; I h; I K,Ca; I Sodium; I Calcium; I Potassium;
Gap Junctions:
Receptor(s): AMPA; NMDA; Gaba;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: Python; MOOSE/PyMOOSE;
Model Concept(s): Sensory processing; Sensory coding; Markov-type model; Olfaction;
Implementer(s): Bhalla, Upinder S [bhalla at ncbs.res.in]; Gilra, Aditya [aditya_gilra -at- yahoo -period- com];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron periglomerular GABA cell; Olfactory bulb main interneuron granule MC GABA cell; AMPA; NMDA; Gaba; I A; I h; I K,Ca; I Sodium; I Calcium; I Potassium; Gaba; Glutamate;
/
olfactory-bulb-gilra-bhalla
channels
neuron_channels
README.txt
cadecay.mod *
hpg.mod *
kA.mod
kamt.mod *
kca3.mod *
kdrmt.mod *
kfasttab.mod
kslowtab.mod
lcafixed.mod
nafast.mod
naxn.mod *
TCa_d.mod *
kfast_k.inf *
kfast_k.tau *
kfast_n.inf *
kfast_n.tau *
kslow_k.inf *
kslow_k.tau *
kslow_n.inf *
kslow_n.tau *
mit_memb.hoc
NeuronSimulatorChannelTest.py
                            
TITLE I-h channel for periglomerular cells from Cadetti and Belluzzi (2001)

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
	v 		(mV)
        eh  		(mV)        
	celsius 	(degC)
	ghbar=.00005 	(mho/cm2)
        vhalft=-65   	(mV)
        a0t=0.00085      	(/ms)
        zetat=0.085    	(1)
        gmt=.5   	(1)
	q10=4.5
}


NEURON {
	SUFFIX Ih_cb : Aditya changed this to match with his MOOSE model
	NONSPECIFIC_CURRENT i
        RANGE ghbar, eh
        GLOBAL linf,ltau
}

STATE {
        l
}

ASSIGNED {
	i (mA/cm2)
        linf      
        ltau
}

INITIAL {
    eh = -30 (mV) : Aditya added this else one has to set it from an external .hoc script
	rate(v)
	l=linf
}


BREAKPOINT {
	SOLVE states METHOD cnexp
	i = ghbar*l*(v-eh)

}


FUNCTION alpt(v(mV)) {
  alpt = exp(zetat*(v-vhalft)) 
}

FUNCTION bett(v(mV)) {
  bett = exp(zetat*gmt*(v-vhalft)) 
}

DERIVATIVE states {     : exact when v held constant; integrates over dt step
        rate(v)
        l' =  (linf - l)/ltau
}

PROCEDURE rate(v (mV)) { :callable from hoc
        LOCAL qt
        qt=q10^((celsius-30)/10)
        linf = 1/(1+ exp((v+80)/10))
        ltau = bett(v)/(qt*a0t*(1+alpt(v)))
}