Olfactory bulb microcircuits model with dual-layer inhibition (Gilra & Bhalla 2015)

 Download zip file 
Help downloading and running models
Accession:153574
A detailed network model of the dual-layer dendro-dendritic inhibitory microcircuits in the rat olfactory bulb comprising compartmental mitral, granule and PG cells developed by Aditya Gilra, Upinder S. Bhalla (2015). All cell morphologies and network connections are in NeuroML v1.8.0. PG and granule cell channels and synapses are also in NeuroML v1.8.0. Mitral cell channels and synapses are in native python.
Reference:
1 . Gilra A, Bhalla US (2015) Bulbar microcircuit model predicts connectivity and roles of interneurons in odor coding. PLoS One 10:e0098045 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron periglomerular GABA cell; Olfactory bulb main interneuron granule MC GABA cell;
Channel(s): I A; I h; I K,Ca; I Sodium; I Calcium; I Potassium;
Gap Junctions:
Receptor(s): AMPA; NMDA; Gaba;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: Python; MOOSE/PyMOOSE;
Model Concept(s): Sensory processing; Sensory coding; Markov-type model; Olfaction;
Implementer(s): Bhalla, Upinder S [bhalla at ncbs.res.in]; Gilra, Aditya [aditya_gilra -at- yahoo -period- com];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron periglomerular GABA cell; Olfactory bulb main interneuron granule MC GABA cell; AMPA; NMDA; Gaba; I A; I h; I K,Ca; I Sodium; I Calcium; I Potassium; Gaba; Glutamate;
/
olfactory-bulb-gilra-bhalla
channels
neuron_channels
README.txt
cadecay.mod *
hpg.mod *
kA.mod
kamt.mod *
kca3.mod *
kdrmt.mod *
kfasttab.mod
kslowtab.mod
lcafixed.mod
nafast.mod
naxn.mod *
TCa_d.mod *
kfast_k.inf *
kfast_k.tau *
kfast_n.inf *
kfast_n.tau *
kslow_k.inf *
kslow_k.tau *
kslow_n.inf *
kslow_n.tau *
mit_memb.hoc
NeuronSimulatorChannelTest.py
                            
TITLE K-DR
: K-DR current for Mitral Cells from Wang et al (1996)
: M.Migliore Jan. 2002

NEURON {
	SUFFIX KDR_ms : aditya changed this
	USEION k READ ek WRITE ik
	RANGE  gmax : aditya replaced gbar with gmax
	GLOBAL minf, mtau
}

PARAMETER {
	gmax = 0.002   	(mho/cm2)	
			
	celsius    : set this globally in Neuron
	ek	(mV)      : aditya need -90mV for granule cell, but nrnivmodl won't allow ek to be set - it is set by the read in ek (see USEION above)
	v 		(mV)
	a0m=0.0035
	vhalfm=-50
	zetam=0.055
	gmm=0.5

	q10=3
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
} 

ASSIGNED {
	ik 		(mA/cm2)
	minf 		mtau (ms)	 	
}
 

STATE { m}

BREAKPOINT {
        SOLVE states METHOD cnexp
	ik = gmax*m*(v - ek)
} 

INITIAL {
    ek = -90 (mV) : aditya set this for granule cell
	trates(v)
	m=minf  
}

DERIVATIVE states {   
        trates(v)      
        m' = (minf-m)/mtau
}

PROCEDURE trates(v) {  
	LOCAL qt
        qt=q10^((celsius-24)/10)
        minf = 1/(1 + exp(-(v-21)/10))
	mtau = betm(v)/(qt*a0m*(1+alpm(v)))
}

FUNCTION alpm(v(mV)) {
  alpm = exp(zetam*(v-vhalfm)) 
}

FUNCTION betm(v(mV)) {
  betm = exp(zetam*gmm*(v-vhalfm)) 
}