Phase response curves firing rate dependency of rat purkinje neurons in vitro (Couto et al 2015)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:155735
NEURON implementation of stochastic gating in the Khaliq-Raman Purkinje cell model. NEURON implementation of the De Schutter and Bower model of a Purkinje Cell. Matlab scripts to compute the Phase Response Curve (PRC). LCG configuration files to experimentally determine the PRC. Integrate and Fire models (leaky and non-leaky) implemented in BRIAN to see the influence of the PRC in a network of unconnected neurons receiving sparse common input.
Reference:
1 . Couto J, Linaro D, De Schutter E, Giugliano M (2015) On the firing rate dependency of the phase response curve of rat Purkinje neurons in vitro. PLoS Comput Biol 11:e1004112 [PubMed]
2 . Linaro D, Couto J, Giugliano M (2014) Command-line cellular electrophysiology for conventional and real-time closed-loop experiments. J Neurosci Methods 230:5-19 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Cerebellum Purkinje GABA cell;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; MATLAB; Brian; LCG; Python;
Model Concept(s): Phase Response Curves;
Implementer(s): Couto, Joao [jpcouto at gmail.com];
Search NeuronDB for information about:  Cerebellum Purkinje GABA cell;
: HH P-type Calcium current
: Created 8/13/02 - nwg

NEURON {
	SUFFIX cap
	USEION ca READ cai, cao WRITE ica
	RANGE pcabar, ica
	GLOBAL minf,mtau
	GLOBAL monovalConc, monovalPerm
}

UNITS {
	(mV) = (millivolt)
	(mA) = (milliamp)
	(mM) = (milli/liter)
	F = 9.6485e4   (coul)
	R = 8.3145 (joule/degC)
}

PARAMETER {
	v (mV)

	pcabar = .00005	(cm/s)
	monovalConc = 140     (mM)
	monovalPerm = 0

	cai             (milli/liter)
	cao             (milli/liter)
}

ASSIGNED {
	ica            (mA/cm2)
        minf
	mtau           (ms)
	T              (degC)
	E              (volts)
}

STATE {
	m
}

INITIAL {
	rates(v)
	m = minf
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	ica = (1e3) * pcabar * m * ghk(v, cai, cao, 2)
}

DERIVATIVE states {
	rates(v)
	m' = (minf - m)/mtau
}

FUNCTION ghk( v(mV), ci(mM), co(mM), z)  (coul/cm3) { LOCAL Ci
	T = 22 + 273.19  : Kelvin
        E = (1e-3) * v
        Ci = ci + (monovalPerm) * (monovalConc)        : Monovalent permeability
	if (fabs(1-exp(-z*(F*E)/(R*T))) < 1e-6) { : denominator is small -> Taylor series
		ghk = (1e-6) * z * F * (Ci-co*exp(-z*(F*E)/(R*T)))*(1-(z*(F*E)/(R*T)))
	} else {
		ghk = (1e-6) * z^2*(E*F^2)/(R*T)*(Ci-co*exp(-z*(F*E)/(R*T)))/(1-exp(-z*(F*E)/(R*T)))
	}
}

PROCEDURE rates (v (mV)) {
        UNITSOFF
	minf = 1/(1+exp(-(v - (-19)) / 5.5))
	mtau = (mtau_func(v)) * 1e3
        UNITSON
}

FUNCTION mtau_func( v (mV) ) (ms) {
        UNITSOFF
        if (v > -50) {
            mtau_func = .000191 + .00376*exp(-((v-(-41.9))/27.8)^2)
        } else {
            mtau_func = .00026367 + .1278 * exp(.10327*v)
        }
        UNITSON
}