Synchronicity of fast-spiking interneurons balances medium-spiny neurons (Damodaran et al. 2014)

 Download zip file 
Help downloading and running models
Accession:156260
This study investigates the role of feedforward and feedback inhibition in maintaining the balance between D1 and D2 MSNs of the striatum. The synchronized firing of FSIs are found to be critical in this mechanism and specifically the gap junction connections between FSIs.
Reference:
1 . Damodaran S, Evans RC, Blackwell KT (2014) Synchronized firing of fast-spiking interneurons is critical to maintain balanced firing between direct and indirect pathway neurons of the striatum. J Neurophysiol 111:836-48 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Neostriatum medium spiny direct pathway GABA cell; Neostriatum medium spiny indirect pathway GABA cell; Neostriatum fast spiking interneuron;
Channel(s):
Gap Junctions: Gap junctions;
Receptor(s): NMDA; Gaba;
Gene(s):
Transmitter(s):
Simulation Environment: GENESIS;
Model Concept(s): Detailed Neuronal Models; Parkinson's;
Implementer(s): Blackwell, Avrama [avrama at gmu.edu]; Damodaran, Sriraman [dsriraman at gmail.com];
Search NeuronDB for information about:  Neostriatum medium spiny direct pathway GABA cell; Neostriatum medium spiny indirect pathway GABA cell; NMDA; Gaba;
/
striatalnetwork
MScell
channels
ampa_channel.g *
BKKchannel.g *
CaL12inact_channel.g *
CaL13_channel.g *
CaNinact_channel.g *
CaR_channel.g *
CaT_channel.g *
gaba_channel.g *
K_DR_channel.g *
kAf_chanRE.g *
kAs_chanRE.g *
kIR_chanKD.g *
naF_chanOg.g *
naF_chanOg.g~
nmda_channel.g *
SKchannelCaDep.g *
synaptic_channel.g *
tabchanforms.g *
                            
//genesis

/***************************		MS Model, Version 6	*********************
**************************** 	    	kAf_chanRE.g 			*********************
						Rebekah Evans rcolema2@gmu.edu	
		Tom Sheehan tsheeha2@gmu.edu	thsheeha@vt.edu	703-538-8361
******************************************************************************
******************************************************************************/


/* K A-type Fast channel
 *  * This is a tab channel created from KAf channel data in Tkatch 2000.
 * They are using dissociated medium spiny neurons, and did not specify recording temperature, so I am assuming room temp.
 * Our data matching process showed that the original model from Johanes Hjorth via Kai Du and Tom Sheehan matched closely with the
 * activation and inactivation inf curves, but did not match the activation tau curve very well. This new tab channel uses Alphas and 
 * Betas obtained by matching both the activation inf and tau curves.  The m power according to wolf is 2 (didn't find in Tkatch)
 * The inactivation curve matched well, and the inactivation tau is constant according to wolf (did not see this in Tkatch either). 
*inactivation has been updated with voltage dependence more consistent with current clamp data
 * *************** Rebekah Evans 02/07/10 rcolema2@gmu.edu ********************************/
/*inactivation has been updated with voltage dependence more consistent 
with current clamp data *** Rebekah Evans Aug 2010 rcolema2@gmu.edu **/


function make_KAf_channel
   //include tabchanforms
  //initial parameters for making tab channel
	float Erev = -0.09
	int m_power = 2
        int h_power = 1
	
//Activation constants for alphas and betas (obtained by matching Tkatch 2000)
//units are mV, ms
	float mA_rate = 1.5
	float mA_vhalf = 4
	float mA_slope = -17
	
	float mB_rate = 0.6
	float mB_vhalf = 10
	float mB_slope = 9
		
//Inactivation constants for alphas and betas
//units are mV, ms
	float hA_rate = 0.105
	float hA_vhalf = -121
	float hA_slope = 22
	
	float hB_rate = 0.065
	float hB_vhalf = -55
	float hB_slope = -11
	    
	//table filling parameters	
    float xmin  = -0.1  /* minimum voltage we will see in the simulation */ 
    float xmax  = 0.05  /* maximum voltage we will see in the simulation */ 
    int  xdivsFiner = 3000
    int c = 0
    float increment =1000*{{xmax}-{xmin}}/{xdivsFiner}
    echo "kAf: inc="{increment}"mV"
    float x = -100

      	
    /* make the table for the activation with a range of -100mV - +50mV
     * with an entry for every 10mV
     */
	 
    str path = "KAf_channel" 
    create tabchannel {path} 
    call {path} TABCREATE X {xdivsFiner} {xmin} {xmax} 
    call {path} TABCREATE Y {xdivsFiner} {xmin} {xmax} 
	 
 
    /*fills the tabchannel with values for minf, mtau, hinf and htau,
     *from the files.
     */
    float slow = 1.5  //original data speeded up too much?
    float qfactor=1.5
    for (c = 0; c < {xdivsFiner} + 1; c = c + 1)
		float m_alpha = {sig_form {mA_rate} {mA_vhalf} {mA_slope} {x}}
		float m_beta = {sig_form {mB_rate} {mB_vhalf} {mB_slope} {x}}
		float h_alpha = {sig_form {hA_rate} {hA_vhalf} {hA_slope} {x}}
		float h_beta = {sig_form {hB_rate} {hB_vhalf} {hB_slope} {x}}
   /* 1e-3 converts from ms to sec */		
		setfield {path} X_A->table[{c}] {{slow}*{1e-3/(m_alpha+m_beta)}}
		setfield {path} X_B->table[{c}] {m_alpha/(m_alpha+m_beta)}
		setfield {path} Y_A->table[{c}] {{1e-3/(h_alpha+h_beta)}/{qfactor}}
                setfield {path} Y_B->table[{c}] {h_alpha/(h_alpha+h_beta)}
		x = x + increment
    end
	
			
    /* Defines the powers of m and h in the Hodgkin-Huxley equation*/
    setfield {path} Ek {Erev} Xpower {m_power} Ypower {h_power} 
    tweaktau {path} X 
    tweaktau {path} Y 

end