CA1 pyramidal neuron: synaptic plasticity during theta cycles (Saudargiene et al. 2015)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:157157
This NEURON code implements a microcircuit of CA1 pyramidal neuron and consists of a detailed model of CA1 pyramidal cell and four types of inhibitory interneurons (basket, bistratified, axoaxonic and oriens lacunosum-moleculare cells). Synaptic plasticity during theta cycles at a synapse in a single spine on the stratum radiatum dendrite of the CA1 pyramidal cell is modeled using a phenomenological model of synaptic plasticity (Graupner and Brunel, PNAS 109(20):3991-3996, 2012). The code is adapted from the Poirazi CA1 pyramidal cell (ModelDB accession number 20212) and the Cutsuridis microcircuit model (ModelDB accession number 123815)
Reference:
1 . Saudargiene A, Cobb S, Graham BP (2015) A computational study on plasticity during theta cycles at Schaffer collateral synapses on CA1 pyramidal cells in the hippocampus. Hippocampus 25:208-18 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Synapse; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA1 basket cell; Hippocampus CA1 bistratified cell; Hippocampus CA1 axo-axonic cell;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Long-term Synaptic Plasticity; STDP;
Implementer(s): Saudargiene, Ausra [ausra.saudargiene at gmail.com];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell;
/
SaudargieneEtAl2015
readme.html
ANsyn.mod *
bgka.mod *
bistableGB_DOWNUP.mod
burststim2.mod *
cad.mod
cadiffus.mod *
cagk.mod *
cal.mod *
calH.mod *
car.mod *
cat.mod *
ccanl.mod *
d3.mod *
gabaa.mod *
gabab.mod *
glutamate.mod *
gskch.mod *
h.mod
hha_old.mod *
hha2.mod *
hNa.mod *
IA.mod
ichan2.mod
Ih.mod *
kadbru.mod
kadist.mod *
kapbru.mod
kaprox.mod *
Kaxon.mod *
kca.mod *
Kdend.mod *
km.mod *
Ksoma.mod *
LcaMig.mod *
my_exp2syn.mod *
Naaxon.mod *
Nadend.mod *
nap.mod
Nasoma.mod *
nca.mod *
nmda.mod *
nmdaca.mod *
regn_stim.mod *
somacar.mod *
STDPE2Syn.mod *
apical-non-trunk-list.hoc
apical-tip-list.hoc
apical-tip-list-addendum.hoc
apical-trunk-list.hoc
axoaxonic_cell17S.hoc
axon-sec-list.hoc
BasalPath.hoc
basal-paths.hoc
basal-tree-list.hoc
basket_cell17S.hoc
bistratified_cell13S.hoc
burst_cell.hoc
current-balance.hoc *
main.hoc
map-segments-to-3d.hoc *
mod_func.c
mosinit.hoc
ObliquePath.hoc *
oblique-paths.hoc
olm_cell2.hoc
pattsN100S20P5_single.dat
PC.ses
peri-trunk-list.hoc
pyramidalNeuron.hoc
randomLocation.hoc
ranstream.hoc
screenshot.png
soma-list.hoc
stim_cell.hoc *
vector-distance.hoc
                            
TITLE Slow Ca-dependent potassium current
                            :
                            :   Ca++ dependent K+ current IC responsible for slow AHP
                            :   Differential equations
                            :
                            :   Model based on a first order kinetic scheme
                            :
                            :       + n cai <->     (alpha,beta)
                            :
                            :   Following this model, the activation fct will be half-activated at 
                            :   a concentration of Cai = (beta/alpha)^(1/n) = cac (parameter)
                            :
                            :   The mod file is here written for the case n=2 (2 binding sites)
                            :   ---------------------------------------------
                            :
                            :   This current models the "slow" IK[Ca] (IAHP): 
                            :      - potassium current
                            :      - activated by intracellular calcium
                            :      - NOT voltage dependent
                            :
                            :   A minimal value for the time constant has been added
                            :
                            :   Ref: Destexhe et al., J. Neurophysiology 72: 803-818, 1994.
                            :   See also: http://www.cnl.salk.edu/~alain , http://cns.fmed.ulaval.ca
                            :   modifications by Yiota Poirazi 2001 (poirazi@LNC.usc.edu)
			    :   taumin = 0.5 ms instead of 0.1 ms	

                            INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

                            NEURON {
                                    SUFFIX kca
                                    USEION k READ ek WRITE ik
                                    USEION ca READ cai
                                    RANGE gk, gbar, m_inf, tau_m
                                    GLOBAL beta, cac
                            }


                            UNITS {
                                    (mA) = (milliamp)
                                    (mV) = (millivolt)
                                    (molar) = (1/liter)
                                    (mM) = (millimolar)
                            }


                            PARAMETER {
                                    v               (mV)
                                    celsius = 36    (degC)
                                    ek      = -80   (mV)
                                    cai     = 2.4e-5 (mM)           : initial [Ca]i
                                    gbar    = 0.01   (mho/cm2)
                                    beta    = 0.03   (1/ms)          : backward rate constant
                                    cac     = 0.025  (mM)            : middle point of activation fct
       				    taumin  = 0.5    (ms)            : minimal value of the time cst
                                    gk
                                  }


                            STATE {m}        : activation variable to be solved in the DEs       

                            ASSIGNED {       : parameters needed to solve DE 
                                    ik      (mA/cm2)
                                    m_inf
                                    tau_m   (ms)
                                    tadj
                            }
                            BREAKPOINT { 
                                    SOLVE states METHOD derivimplicit
                                    gk = gbar*m*m*m     : maximum channel conductance
                                    ik = gk*(v - ek)    : potassium current induced by this channel
                            }

                            DERIVATIVE states { 
                                    evaluate_fct(v,cai)
                                    m' = (m_inf - m) / tau_m
                            }

                            UNITSOFF
                            INITIAL {
                            :
                            :  activation kinetics are assumed to be at 22 deg. C
                            :  Q10 is assumed to be 3
                            :
                                    tadj = 3 ^ ((celsius-22.0)/10) : temperature-dependent adjastment factor
                                    evaluate_fct(v,cai)
                                    m = m_inf
                            }

                            PROCEDURE evaluate_fct(v(mV),cai(mM)) {  LOCAL car
                                    car = (cai/cac)^2
                                    m_inf = car / ( 1 + car )      : activation steady state value
                                    tau_m =  1 / beta / (1 + car) / tadj
                                    if(tau_m < taumin) { tau_m = taumin }   : activation min value of time cst
                            }
                            UNITSON