Firing neocortical layer V pyramidal neuron (Reetz et al. 2014; Stadler et al. 2014)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:168148
Neocortical Layer V model with firing behaviour adjusted to in vitro observations. The model was used to investigate the effects of IFN and PKC on the excitability of neurons (Stadler et al 2014, Reetz et al. 2014). The model contains new channel simulations for HCN1, HCN2 and the big calcium dependent potassium channel BK.
Reference:
1 . Stadler K, Bierwirth C, Stoenica L, Battefeld A, Reetz O, Mix E, Schuchmann S, Velmans T, Rosenberger K, Bräuer AU, Lehnardt S, Nitsch R, Budt M, Wolff T, Kole MH, Strauss U (2014) Elevation in type I interferons inhibits HCN1 and slows cortical neuronal oscillations. Cereb Cortex 24:199-210 [PubMed]
2 . Reetz O, Stadler K, Strauss U (2014) Protein kinase C activation mediates interferon-ß-induced neuronal excitability changes in neocortical pyramidal neurons. J Neuroinflammation 11:185 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I A; I K; I M; I h; I K,Ca; I Sodium; I Calcium; I Mixed; I Potassium; I Q;
Gap Junctions:
Receptor(s):
Gene(s): HCN1; HCN2;
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Detailed Neuronal Models; Action Potentials; Signaling pathways;
Implementer(s): Stadler, Konstantin [konstantin.stadler at ntnu.no];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; I Na,p; I Na,t; I L high threshold; I A; I K; I M; I h; I K,Ca; I Sodium; I Calcium; I Mixed; I Potassium; I Q;
/
stadler2014_layerV
geo
sub
readme.html
readme_alt_format.html
ca.mod
cad.mod
caT.mod
HCN1r.mod
HCN2r.mod
kadist.mod
kaprox.mod
kBK.mod
kca.mod
km.mod
kv.mod *
na.mod *
Nap.mod
nax.mod *
syn.mod *
LayerVinit.hoc
LayerVrun.hoc
mosinit.hoc
screenshot1.png
screenshot2.png
                            
: Suffix syn2

COMMENT
synaptic current with exponential rise and decay conductance defined by
        i = g * (v - e)      i(nanoamps), g(micromhos);
        where
         g = 0 for t < onset and
         g=amp*((1-exp(-(t-onset)/tau0))-(1-exp(-(t-onset)/tau1)))
          for t > onset
plus a little bulletproofing and stuff to make it run a mite faster
and make it compatible with cvode
ENDCOMMENT

NEURON {
	POINT_PROCESS syn2
	RANGE onset, tau0, tau1, gmax, e, i
	NONSPECIFIC_CURRENT i
}

UNITS {
	(nA) = (nanoamp)
	(mV) = (millivolt)
	(uS) = (microsiemens)
}

PARAMETER {
	onset=0  (ms)
	tau0=0.5 (ms) <1e-3,1e6>
	tau1=5.0 (ms) <1e-3,1e6>
	gmax=0 	 (uS) <0,1e9>
	e=0	 (mV)
}

ASSIGNED {
	v (mV)
	i (nA)
	g (uS)
	factor
	a0
	a1
}

INITIAL { LOCAL tpeak
	if (tau0/tau1 > 0.9999) {
		tau0 = 0.9999*tau1
	}
	tpeak=tau0*tau1*log(tau0/tau1)/(tau0-tau1)
	factor=1/((1-exp(-tpeak/tau0))-(1-exp(-tpeak/tau1)))
}

BREAKPOINT {
	if (gmax) { at_time(onset) }
	g = gmax*cond(t-onset)
	i = g*(v - e)
}

FUNCTION cond(x (ms)) { LOCAL temp
	if (x < 0) {
		cond = 0
	}else{
		temp = x/tau0
		if (temp > 10) {
			a0 = 1
		} else {
			a0=1-exp(-temp)
		}
		temp = x/tau1
		if (temp > 10) {
			a1 = 1
		} else {
			a1=1-exp(-temp)
		}
		cond = factor*(a0-a1)
	}
}