Pyramidal neuron, fast, regular, and irregular spiking interneurons (Konstantoudaki et al 2014)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:168310
This is a model network of prefrontal cortical microcircuit based primarily on rodent data. It includes 16 pyramidal model neurons, 2 fast spiking interneuron models, 1 regular spiking interneuron model and 1 irregular spiking interneuron model. The goal of the paper was to use this model network to determine the role of specific interneuron subtypes in persistent activity
Reference:
1 . Konstantoudaki X, Papoutsi A, Chalkiadaki K, Poirazi P, Sidiropoulou K (2014) Modulatory effects of inhibition on persistent activity in a cortical microcircuit model. Front Neural Circuits 8:7 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron; Neocortex spiking irregular interneuron;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I h; I_Ks; I_KD;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Synchronization; Active Dendrites;
Implementer(s): Sidiropoulou, Kyriaki [sidirop at imbb.forth.gr]; Konstantoudaki, Xanthippi [xeniakons at gmail.com];
Search NeuronDB for information about:  GabaA; GabaB; AMPA; NMDA; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I h; I_Ks; I_KD; Gaba; Glutamate;
/
KonstantoudakiEtAl2014
experiment
data
ampa.mod *
ampain.mod *
cadyn.mod *
cadynin.mod *
cal.mod *
calc.mod *
calcb.mod *
can.mod *
cancr.mod *
canin.mod *
car.mod *
cat.mod *
catcb.mod *
gabaa.mod *
gabaain.mod *
gabab.mod *
h.mod *
hcb.mod *
hin.mod *
ican.mod *
iccb.mod *
iccr.mod *
icin.mod *
iks.mod *
ikscb.mod *
ikscr.mod *
iksin.mod *
kadist.mod *
kadistcr.mod *
kadistin.mod *
kaprox.mod *
kaproxcb.mod *
kaproxin.mod *
kca.mod *
kcain.mod *
kct.mod *
kctin.mod *
kdr.mod *
kdrcb.mod *
kdrcr.mod *
kdrin.mod *
naf.mod *
nafcb.mod *
nafcr.mod *
nafin.mod *
nafx.mod *
nap.mod *
netstim.mod *
NMDA.mod *
NMDAIN.mod *
sinclamp.mod *
cb.hoc
cr.hoc
ExperimentControl.hoc *
final.hoc
incell.hoc
net.hoc
pfc_pc_temp.hoc
run
run_orig
                            
TITLE high threshold calcium current (L-current)

COMMENT
        *********************************************
        reference:      McCormick & Huguenard (1992) 
                        J.Neurophysiology 68(4), 1384-1400
        found in:       hippocampal pyramidal cells
        *********************************************
        Assembled for MyFirstNEURON by Arthur Houweling
ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
        SUFFIX calc
	:SUFFIX cal
        USEION ca READ cai,cao WRITE ica
        RANGE gcabar, m_inf, tau_m, ica
}

UNITS {
        (mA)    = (milliamp)
        (mV)    = (millivolt)
        (mM)    = (milli/liter)
        FARADAY = 96480 (coul)
        R       = 8.314 (volt-coul/degK)
}

PARAMETER {
        v                       (mV)
        celsius = 23            (degC)
        dt                      (ms)
        cai = 50e-6             (mM)
        cao = 2                 (mM)
        gcabar= 0.000276        (cm/s)          
}

STATE {
        m
}

ASSIGNED {
        ica             (mA/cm2)
        tau_m           (ms)
        m_inf 
        tadj
}

BREAKPOINT { 
        SOLVE states :METHOD euler
        ica = gcabar * m*m * ghk(v,cai,cao,2)
}

:DERIVATIVE states {
:       rates(v)
:
:       m'= (m_inf-m) / tau_m 
:}
  
PROCEDURE states() {
        rates(v)
        m= m + (1-exp(-dt/tau_m))*(m_inf-m)
}

UNITSOFF
INITIAL {
        tadj = 3^((celsius-23.5)/10)
        rates(v)
        m = m_inf
:        ica = gcabar * m*m * ghk(v,cai,cao,2)
}

FUNCTION ghk( v(mV), ci(mM), co(mM), z)  (millicoul/cm3) {
        LOCAL e, w
        w = v * (.001) * z*FARADAY / (R*(celsius+273.16))
        if (fabs(w)>1e-4) 
          { e = w / (exp(w)-1) }
        else
        : denominator is small -> Taylor series
          { e = 1-w/2 }
        ghk = - (.001) * z*FARADAY * (co-ci*exp(w)) * e
}
UNITSOFF

PROCEDURE rates(v(mV)) { LOCAL a,b
        a = 1.6 / (1+ exp(-0.072*(v-15)))
        b = 0.02 * vtrap( -(v-1.31), 5.36/2)


         tau_m = 1/(a+b) / (tadj*1.43)

        m_inf = 1/(1+exp((v+9)/-6))
}

FUNCTION vtrap(x,c) { 
        : Traps for 0 in denominator of rate equations
        if (fabs(x/c) < 1e-6) {
          vtrap = c + x/2 }
        else {
          vtrap = x / (1-exp(-x/c)) }
}
UNITSON