Pyramidal neuron, fast, regular, and irregular spiking interneurons (Konstantoudaki et al 2014)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:168310
This is a model network of prefrontal cortical microcircuit based primarily on rodent data. It includes 16 pyramidal model neurons, 2 fast spiking interneuron models, 1 regular spiking interneuron model and 1 irregular spiking interneuron model. The goal of the paper was to use this model network to determine the role of specific interneuron subtypes in persistent activity
Reference:
1 . Konstantoudaki X, Papoutsi A, Chalkiadaki K, Poirazi P, Sidiropoulou K (2014) Modulatory effects of inhibition on persistent activity in a cortical microcircuit model. Front Neural Circuits 8:7 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron; Neocortex spiking irregular interneuron;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I h; I_Ks; I_KD;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Synchronization; Active Dendrites;
Implementer(s): Sidiropoulou, Kyriaki [sidirop at imbb.forth.gr]; Konstantoudaki, Xanthippi [xeniakons at gmail.com];
Search NeuronDB for information about:  GabaA; GabaB; AMPA; NMDA; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I h; I_Ks; I_KD; Gaba; Glutamate;
/
KonstantoudakiEtAl2014
experiment
data
ampa.mod *
ampain.mod *
cadyn.mod *
cadynin.mod *
cal.mod *
calc.mod *
calcb.mod *
can.mod *
cancr.mod *
canin.mod *
car.mod *
cat.mod *
catcb.mod *
gabaa.mod *
gabaain.mod *
gabab.mod *
h.mod *
hcb.mod *
hin.mod *
ican.mod *
iccb.mod *
iccr.mod *
icin.mod *
iks.mod *
ikscb.mod *
ikscr.mod *
iksin.mod *
kadist.mod *
kadistcr.mod *
kadistin.mod *
kaprox.mod *
kaproxcb.mod *
kaproxin.mod *
kca.mod *
kcain.mod *
kct.mod *
kctin.mod *
kdr.mod *
kdrcb.mod *
kdrcr.mod *
kdrin.mod *
naf.mod *
nafcb.mod *
nafcr.mod *
nafin.mod *
nafx.mod *
nap.mod *
netstim.mod *
NMDA.mod *
NMDAIN.mod *
sinclamp.mod *
cb.hoc
cr.hoc
ExperimentControl.hoc *
final.hoc
incell.hoc
net.hoc
pfc_pc_temp.hoc
run
run_orig
                            
: Delayed rectifier K+ channel

NEURON {
	SUFFIX kdrcb
	USEION k READ ki, ko WRITE ik
	RANGE gkdrbar, ik, gk
	
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	
}

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
PARAMETER {
	v (mV)
	dt (ms)
	gkdrbar= 0.0338 (mho/cm2) <0,1e9>
	
	
}

STATE {
	n
}

ASSIGNED {
	ik (mA/cm2)
	inf
	tau (ms)
	gk (mho/cm2)
	ek (mV)
	ki (mM)
	ko (mM)

}


INITIAL {
	rate(v)
	n = inf
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	gk= gkdrbar*n*n*n*n
	ek = 25 * log(ko/ki)
	ik = gk*(v-ek)
	
}

DERIVATIVE states {
	rate(v)
	n' = (inf-n)/tau
}

UNITSOFF

FUNCTION alf(v){ LOCAL va 
	
	   va=v-13
	if (fabs(va)<1e-04){
	   va=va+0.0001
		alf= (-0.018*va)/(-1+exp(-(va/25)))
	} else {
	  	alf = (-0.018*(v-13))/(-1+exp(-((v-13)/25)))
	}
}


FUNCTION bet(v) { LOCAL vb 
	
	  vb=v-23
	if (fabs(vb)<1e-04){
	  vb=vb+0.0001
		bet= (0.0054*vb)/(-1+exp(vb/12))
	} else {
	  	bet = (0.0054*(v-23))/(-1+exp((v-23)/12))
	}
}	






PROCEDURE rate(v (mV)) {LOCAL q10, sum, aa, ab
	
	aa=alf(v) ab=bet(v) 
	
	sum = aa+ab
	inf = aa/sum
	tau = 1/(sum)
	
	
}

UNITSON