Role for short term plasticity and OLM cells in containing spread of excitation (Hummos et al 2014)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:168314
This hippocampus model was developed by matching experimental data, including neuronal behavior, synaptic current dynamics, network spatial connectivity patterns, and short-term synaptic plasticity. Furthermore, it was constrained to perform pattern completion and separation under the effects of acetylcholine. The model was then used to investigate the role of short-term synaptic depression at the recurrent synapses in CA3, and inhibition by basket cell (BC) interneurons and oriens lacunosum-moleculare (OLM) interneurons in containing the unstable spread of excitatory activity in the network.
Reference:
1 . Hummos A, Franklin CC, Nair SS (2014) Intrinsic mechanisms stabilize encoding and retrieval circuits differentially in a hippocampal network model. Hippocampus 24:1430-48 [PubMed]
2 . Hummos A, Nair SS (2017) An integrative model of the intrinsic hippocampal theta rhythm. PLoS One 12:e0182648 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Dentate gyrus granule GLU cell; Hippocampus CA3 pyramidal GLU cell; Hippocampus CA3 interneuron basket GABA cell; Hippocampus CA3 stratum oriens lacunosum-moleculare interneuron; Abstract Izhikevich neuron;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s): Acetylcholine; Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Epilepsy; Storage/recall;
Implementer(s):
Search NeuronDB for information about:  Dentate gyrus granule GLU cell; Hippocampus CA3 pyramidal GLU cell; Hippocampus CA3 interneuron basket GABA cell; Acetylcholine; Gaba; Glutamate;
///// Saving cell locations
objref locEC,locCA3,typesCA3,locDG,typesDG, locCA3o, locCA3b, locDGh, locDGb

{locEC = new Matrix(3,inpTotal)}
{locCA3 = new Matrix(3,excTotal)}
{locCA3o = new Matrix(3,CA3oTotal)}
{locCA3b = new Matrix(3,CA3bTotal)}

{locDG = new Matrix(3,DGexcTotal)}
{locDGh = new Matrix(3, DGhTotal)}
{locDGb = new Matrix(3, DGbTotal)}

// CA3 1-3 1-3 5-8 10
//-----SET CELL Locations-----------

// EC cells
n=0
  for(y=0.25;y<=3;y+=0.5) {
    for(x=1.5;x<=15;x+=3) {
	  z = 10
	  locEC.x[0][n] = x
	  locEC.x[1][n] = y	  
	  locEC.x[2][n] = z
	n += 1
    }
  }
  
// CA3 Cells
 
  
   // OLM Interneurons
 n=0
  for(z=2;z<2.5;z+=2) {
   for(y=0.75;y<=3;y+=1.5) {
    for(x=1;x<=15;x+=4) {
      locCA3o.x[0][n] = x
	  locCA3o.x[1][n] = y
	  locCA3o.x[2][n] = z	

	n += 1
    }
  }
  }
  
   // Basket cell Interneurons
 n=0
  for(z=2;z<2.5;z+=2) {
   for(y=0.75;y<=3;y+=1.5) {
    for(x=1.5;x<=15;x+=4) {
      locCA3b.x[0][n] = x
	  locCA3b.x[1][n] = y
	  locCA3b.x[2][n] = z	

	n += 1
    }
  }
  }
  
  // Principal Cells   
  n=0
    for(z=1;z<4;z+=1) {
    for(y=0.5;y<=3;y+=1) {
    for(x=0.5;x<=15;x+=2.3) {
      locCA3.x[0][n] = x
	  locCA3.x[1][n] = y
	  locCA3.x[2][n] = z		  
	  
	n += 1
    }
  }
  }
 
 // DG Cells
  
  // HIPP Interneurons
 n=0
    for(z=6;z<7;z+=1) {  
   for(y=0.9375;y<=7.5;y+=1.875) {
    for(x=0.8375;x<=15;x+=1.875) {
	//    for(x=2;x<=15;x+=3.7) {
      locDGh.x[0][n] = x
	  locDGh.x[1][n] = y
	  locDGh.x[2][n] = z	
	  n += 1
    }
  }
  }
  
  
  // Basket Interneurons
 n=0
    for(z=6;z<7;z+=1) {  
   for(y=0.9375;y<=7.5;y+=1.875) {
    for(x=0.9375;x<=15;x+=1.875) {
		//    for(x=0.94;x<=15;x+=3.7) {
      locDGb.x[0][n] = x
	  locDGb.x[1][n] = y
	  locDGb.x[2][n] = z	
	  n += 1
    }
  }
  }
  
  // Principal Cells
  n=0
    for(z=5;z<8;z+=1) {
	for(y=0.47;y<=7.5;y+=0.94) {
    for(x=0.47;x<=15;x+=0.94) {
      locDG.x[0][n] = x
	  locDG.x[1][n] = y
	  locDG.x[2][n] = z	
	  n += 1
    }
  }
  }