A spatial model of the intermediate superior colliculus (Moren et. al. 2013)

 Download zip file 
Help downloading and running models
Accession:168866
A spatial model of the intermediate superior colliculus. It reproduces the collicular saccade-generating output profile from NMDA receptor-driven burst neurons, shaped by integrative inhibitory feedback from spreading buildup neuron activity. The model is consistent with the view that collicular activity directly shapes the temporal profile of saccadic eye movements. We use the Adaptive exponential integrate and fire neuron model, augmented with an NMDA-like membrane potential-dependent receptor. In addition, we use a synthetic spike integrator model as a stand-in for a spike-integrator circuit in the reticular formation. NOTE: We use a couple of custom neuron models, so the supplied model file includes an entire version of NEST. I also include a patch that applies to a clean version of the simulator (see the doc/README).
Reference:
1 . Morén J, Shibata T, Doya K (2013) The mechanism of saccade motor pattern generation investigated by a large-scale spiking neuron model of the superior colliculus. PLoS One 8:e57134 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Connectionist Network;
Brain Region(s)/Organism: Superior colliculus;
Cell Type(s): Abstract integrate-and-fire adaptive exponential (AdEx) neuron;
Channel(s):
Gap Junctions:
Receptor(s): NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEST; Python;
Model Concept(s): Activity Patterns; Bursting; Spatio-temporal Activity Patterns; Action Selection/Decision Making;
Implementer(s):
Search NeuronDB for information about:  NMDA;
/
NEST-SCModel
nest-2.2.2
libltdl
autom4te.cache
config
libltdl
loaders
m4
README *
aclocal.m4
argz.c *
argz_.h *
config.guess
config.sub
config-h.in *
configure
configure.ac *
COPYING.LIB *
install-sh
lt__alloc.c *
lt__dirent.c *
lt__strl.c *
lt_dlloader.c *
lt_error.c *
ltdl.c *
ltdl.h *
ltmain.sh
Makefile.am *
Makefile.in
missing
slist.c *
                            
/* lt__dirent.c -- internal directory entry scanning interface

   Copyright (C) 2001, 2004 Free Software Foundation, Inc.
   Written by Bob Friesenhahn, 2001

   NOTE: The canonical source of this file is maintained with the
   GNU Libtool package.  Report bugs to bug-libtool@gnu.org.

GNU Libltdl is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

As a special exception to the GNU Lesser General Public License,
if you distribute this file as part of a program or library that
is built using GNU Libtool, you may include this file under the
same distribution terms that you use for the rest of that program.

GNU Libltdl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with GNU Libltdl; see the file COPYING.LIB.  If not, a
copy can be downloaded from  http://www.gnu.org/licenses/lgpl.html,
or obtained by writing to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/

#include "lt__private.h"

#include <assert.h>
#include <stddef.h>

#include "lt__dirent.h"

#if defined(__WINDOWS__)

void
closedir (DIR *entry)
{
  assert (entry != (DIR *) NULL);
  FindClose (entry->hSearch);
  free ((void *) entry);
}


DIR *
opendir (const char *path)
{
  char file_spec[LT_FILENAME_MAX];
  DIR *entry;

  assert (path != (char *) 0);
  if (lt_strlcpy (file_spec, path, sizeof file_spec) >= sizeof file_spec
      || lt_strlcat (file_spec, "\\", sizeof file_spec) >= sizeof file_spec)
    return (DIR *) 0;
  entry = (DIR *) malloc (sizeof(DIR));
  if (entry != (DIR *) 0)
    {
      entry->firsttime = TRUE;
      entry->hSearch = FindFirstFile (file_spec, &entry->Win32FindData);

      if (entry->hSearch == INVALID_HANDLE_VALUE)
	{
	  if (lt_strlcat (file_spec, "\\*.*", sizeof file_spec) < sizeof file_spec)
	    {
	      entry->hSearch = FindFirstFile (file_spec, &entry->Win32FindData);
	    }

	  if (entry->hSearch == INVALID_HANDLE_VALUE)
	    {
	      entry = (free (entry), (DIR *) 0);
	    }
	}
    }

  return entry;
}


struct dirent *
readdir (DIR *entry)
{
  int status;

  if (entry == (DIR *) 0)
    return (struct dirent *) 0;

  if (!entry->firsttime)
    {
      status = FindNextFile (entry->hSearch, &entry->Win32FindData);
      if (status == 0)
        return (struct dirent *) 0;
    }

  entry->firsttime = FALSE;
  if (lt_strlcpy (entry->file_info.d_name, entry->Win32FindData.cFileName,
	sizeof entry->file_info.d_name) >= sizeof entry->file_info.d_name)
    return (struct dirent *) 0;
  entry->file_info.d_namlen = strlen (entry->file_info.d_name);

  return &entry->file_info;
}

#endif /*defined(__WINDOWS__)*/