/* describes the activation function for the A channel.
* taken from the MSN activation boltzman from:
* (tkatch, j. neuroscience, 20(2):579-588)
*/
//float EREST_ACT = -0.056
function AChanAct(voltage)
float voltage
float vh = -0.045
float vc = -0.013
float act = {1 / {1 + {exp {{{voltage} - {vh}} / {vc}}}}}
return act
end
/* describes the time constant over a range of voltages
* taken from Figure 2b of J. neuroscience 20(2):579-588,
* tkatch january 2000
*/
function AChanTauAct(voltage)
float voltage
float vh = -0.07
float vc = 0.013
return {1e-3 * {1 + {exp {-{{voltage} - {vh} } / {vc}}}}}
end
/* describes the inactivation function for the A channel.
* taken from the MSN inactivation boltzman from:
* (tkatch, j. neuroscience, 20(2):579-588)
* vc was not given in this paper, so it was estimated to be
* about 8mV (see (surmeier, brain research, 473:187-192
* vh = -0.0756 vc = 0.008
*/
function AChanInact(voltage)
float voltage
float vh = -0.077
float vc =-0.008
return {1 / {1 + {exp {-{{voltage} - {vh}} / {vc}}}}}
end
/* (tkatch, j. neuroscience, 20(2):579-588)
* time constant of inactivation of the A channel
* it is a constant, but the function is placed here in
* order to be consistent
*/
function AChanTauInact(voltage)
float voltage
return 0.014
end
function make_A_channel
str path = "A_channel"
float Erev = -0.09 /* reversal potential of potassium */
float xmin = -0.1 /* minimum voltage we will see in the simulation */
float xmax = 0.05 /* maximum voltage we will see in the simulation */
float step = 0.005 /* use a 5mV step size */
int xdivs = 30 /* the number of divisions between -0.1 and 0.05 */
int c = 0
create tabchannel {path}
/* make the table for the activation with a range of -100mV - +50mV
* with an entry for ever 5mV
*/
call {path} TABCREATE X {xdivs} {xmin} {xmax}
call {path} TABCREATE Y {xdivs} {xmin} {xmax}
/* set the tau and m_inf for the activation and inactivation */
for(c = 0; c <= {xdivs}; c = c + 1)
setfield {path} X_A->table[{c}] {AChanTauAct {{c * {step}} + xmin}}
setfield {path} X_B->table[{c}] {AChanAct {{c * {step}} + xmin}}
setfield {path} Y_A->table[{c}] {AChanTauInact {{c * {step}} + xmin}}
setfield {path} Y_B->table[{c}] {AChanInact {{c * {step}} + xmin}}
end
/* this is fudged from the genesis book */
setfield {path} Ek {Erev} Xpower 4 Ypower 1
/* fill the tables with the values of A and B
* calculated from tau and m_inf
*/
/* for testing */
//for(c = 0; c < 30; c = c + 1)
// showfield A_channel X_A->table[{c}]
// showfield {path} X_B->table[{c}]
// showfield {path} Y_A->table[{c}]
// showfield {path} Y_B->table[{c}]
// end
tweaktau {path} X
tweaktau {path} Y
call {path} TABFILL X 3000 0
call {path} TABFILL Y 3000 0
end
|