Striatal NN model of MSNs and FSIs investigated effects of dopamine depletion (Damodaran et al 2015)

 Download zip file 
Help downloading and running models
Accession:169984
This study investigates the mechanisms that are affected in the striatal network after dopamine depletion and identifies potential therapeutic targets to restore normal activity.
Reference:
1 . Damodaran S, Cressman JR, Jedrzejewski-Szmek Z, Blackwell KT (2015) Desynchronization of fast-spiking interneurons reduces ß-band oscillations and imbalance in firing in the dopamine-depleted striatum. J Neurosci 35:1149-59 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell; Axon; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Neostriatum medium spiny direct pathway GABA cell; Neostriatum medium spiny indirect pathway GABA cell; Neostriatum fast spiking interneuron;
Channel(s): I Sodium; I Potassium; Kir;
Gap Junctions: Gap junctions;
Receptor(s): D1; D2; GabaA; Glutamate;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: GENESIS;
Model Concept(s): Synchronization; Detailed Neuronal Models; Parkinson's;
Implementer(s): Damodaran, Sriraman [dsriraman at gmail.com];
Search NeuronDB for information about:  Neostriatum medium spiny direct pathway GABA cell; Neostriatum medium spiny indirect pathway GABA cell; D1; D2; GabaA; Glutamate; I Sodium; I Potassium; Kir; Gaba; Glutamate;
/
DamodaranEtAl2015
Matlab_files
Inputwithcorrelation.asv *
Inputwithcorrelation.m *
InputwithCorrelation2.m *
makeDaughterInput.m *
makeDaughterInsignal.m *
makeTrainInput.m *
makeTrainInsignal.m *
poissonMaxTime.m *
writeInput.asv *
writeInput.m *
                            
% http://en.wikipedia.org/wiki/Exponential_distribution
%
% -ln(u)/lambda
%

function p = poissonMaxTime(lambda, maxTime)

p = cumsum(-log(rand(ceil(lambda*maxTime),1))/lambda);
t = p(end) - log(rand(1))/lambda;

while(t < maxTime)
    p = [p; t];
    t = t - log(rand(1))/lambda;
end

p = p(find(p < maxTime),1);