Long time windows from theta modulated inhib. in entorhinal–hippo. loop (Cutsuridis & Poirazi 2015)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:181967
"A recent experimental study (Mizuseki et al., 2009) has shown that the temporal delays between population activities in successive entorhinal and hippocampal anatomical stages are longer (about 70–80 ms) than expected from axon conduction velocities and passive synaptic integration of feed-forward excitatory inputs. We investigate via computer simulations the mechanisms that give rise to such long temporal delays in the hippocampus structures. ... The model shows that the experimentally reported long temporal delays in the DG, CA3 and CA1 hippocampal regions are due to theta modulated somatic and axonic inhibition..."
Reference:
1 . Cutsuridis V, Poirazi P (2015) A computational study on how theta modulated inhibition can account for the long temporal windows in the entorhinal-hippocampal loop. Neurobiol Learn Mem 120:69-83 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Dentate gyrus granule GLU cell; Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Hippocampus CA3 interneuron basket GABA cell; Dentate gyrus mossy cell; Dentate gyrus basket cell; Dentate gyrus hilar cell; Hippocampus CA1 basket cell; Hippocampus CA3 stratum oriens lacunosum-moleculare interneuron; Hippocampus CA1 bistratified cell; Hippocampus CA1 axo-axonic cell; Hippocampus CA3 axo-axonic cells;
Channel(s): I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I M; I h; I K,Ca; I_AHP;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Pattern Recognition; Temporal Pattern Generation; Spatio-temporal Activity Patterns; Brain Rhythms; Storage/recall;
Implementer(s): Cutsuridis, Vassilis [vcutsuridis at gmail.com];
Search NeuronDB for information about:  Dentate gyrus granule GLU cell; Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Hippocampus CA3 interneuron basket GABA cell; GabaA; AMPA; NMDA; I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I M; I h; I K,Ca; I_AHP;
/
CutsuridisPoirazi2015
Results
Weights
readme.html
ANsyn.mod *
bgka.mod *
borgkm.mod *
burststim.mod
cacumm.mod *
cad.mod
cadiv.mod *
cagk.mod
cagk2.mod
cagk3.mod
cal.mod *
cal1.mod
cal2.mod
calH.mod *
can2.mod *
can3.mod
car.mod *
cat.mod *
cat2.mod
cat3.mod
ccanl.mod *
distr.mod *
gskch.mod *
h.mod *
h2.mod
hha_old.mod *
hha2.mod *
hNa.mod *
hyperde3.mod *
IA.mod *
ichan2.mod *
Ih.mod *
kad.mod *
kahp.mod *
KahpM95.mod *
kap.mod *
kaprox.mod
Kaxon.mod *
kca.mod *
kd.mod *
Kdend.mod *
kdr.mod *
kdrca1.mod *
km.mod *
km2.mod
Ksoma.mod *
LcaMig.mod *
my_exp2syn.mod *
na3n.mod *
Naaxon.mod *
Nadend.mod *
nahh.mod *
Nasoma.mod *
naxn.mod *
nca.mod *
nmda.mod *
regn_stim.mod *
somacar.mod *
BasketCell.hoc
burst_cell.hoc
CA1AAC.hoc
CA1BC.hoc
CA1BSC.hoc
CA1OLM.hoc
CA1PC.hoc
CA3AAC.hoc
CA3BC.hoc
CA3BSC.hoc
CA3OLM.hoc
CA3PC.hoc
GC.hoc
gui.ses
HC.hoc
MC.hoc
mosinit.hoc
network.hoc
OLM.hoc
ranstream.hoc *
rig.hoc
screenshot.png
stim_cell.hoc
                            
COMMENT

Ih current	 - hyperpolarization-activated nonspecific Na and K channel
		 - contributes to the resting membrane potential
		 - controls the afterhyperpolarization
Reference:

1.	Maccaferri, G. and McBain, C.J. The hyperpolarization-activated current
	(Ih) and its contribution to pacemaker activity in rat CA1 hippocampal
	stratum oriens-alveus interneurons, J. Physiol. 497.1:119-130,
	1996.

		V1/2 = -84.1 mV
		   k = 10.2
		reversal potential = -32.9 +/- 1.1 mV

at -70 mV, currents were fitted by a single exponetial of t = 2.8+/- 0.76 s
at -120 mV, two exponentials were required, t1 = 186.3+/-33.6 ms 
t2 = 1.04+/-0.16 s


2.	Maccaferri, G. et al. Properties of the
	Hyperpoarization-activated current in rat hippocampal CA1 Pyramidal
	cells. J. Neurophysiol. Vol. 69 No. 6:2129-2136, 1993.

		V1/2 = -97.9 mV
		   k = 13.4
		reversal potential = -18.3 mV

3.	Pape, H.C.  Queer current and pacemaker: The
	hyperpolarization-activated cation current in neurons, Annu. Rev. 
	Physiol. 58:299-327, 1996.

		single channel conductance is around 1 pS
		average channel density is below 0.5 um-2
		0.5 pS/um2 = 0.00005 mho/cm2 = 0.05 umho/cm2		
4.	Magee, J.C. Dendritic Hyperpolarization-Activated Currents Modify
	the Integrative Properties of Hippocampal CA1 Pyramidal Neurons, J.
	Neurosci., 18(19):7613-7624, 1998

Deals with Ih in CA1 pyramidal cells.  Finds that conductance density
increases with distance from the soma.

soma g = 0.0013846 mho/cm2
dendrite g (300-350 um away) = 0.0125 mho/cm2
see Table 1 in th paper

ENDCOMMENT

 UNITS {
        (mA) = (milliamp)
        (mV) = (millivolt)
}
 
NEURON {
        SUFFIX Ih
        USEION h READ eh WRITE ih VALENCE 1
        RANGE gkhbar,ih
        GLOBAL rinf, rexp, tau_r
}
 
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
 
PARAMETER {
        v (mV)
        p = 5 (degC)
        dt (ms)
        gkhbar = 0.001385 (mho/cm2)			
        eh = -32.9 (mV)
}
 
STATE {
        r
}
 
ASSIGNED {
        ih (mA/cm2)
	rinf rexp
	tau_r
}
 
BREAKPOINT {
        SOLVE deriv METHOD derivimplicit
        ih = gkhbar*r*(v - eh)
}
 
INITIAL {
	rates(v)
	r = rinf
}

DERIVATIVE deriv { :Computes state variable h at current v and dt.
	rates(v)
	r' = (rinf - r)/tau_r
}

PROCEDURE rates(v) {  :Computes rate and other constants at current v.
                      :Call once from HOC to initialize inf at resting v.
        TABLE rinf, rexp, tau_r DEPEND dt, p FROM -200
TO 100 WITH 300
	rinf = 1/(1 + exp((v+84.1)/10.2))
	rexp = 1 - exp(-dt/(tau_r))
	tau_r = 100 + 1/(exp(-17.9-0.116*v)+exp(-1.84+0.09*v))
}
 
UNITSON