Long time windows from theta modulated inhib. in entorhinal–hippo. loop (Cutsuridis & Poirazi 2015)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:181967
"A recent experimental study (Mizuseki et al., 2009) has shown that the temporal delays between population activities in successive entorhinal and hippocampal anatomical stages are longer (about 70–80 ms) than expected from axon conduction velocities and passive synaptic integration of feed-forward excitatory inputs. We investigate via computer simulations the mechanisms that give rise to such long temporal delays in the hippocampus structures. ... The model shows that the experimentally reported long temporal delays in the DG, CA3 and CA1 hippocampal regions are due to theta modulated somatic and axonic inhibition..."
Reference:
1 . Cutsuridis V, Poirazi P (2015) A computational study on how theta modulated inhibition can account for the long temporal windows in the entorhinal-hippocampal loop. Neurobiol Learn Mem 120:69-83 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Dentate gyrus granule GLU cell; Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Hippocampus CA3 interneuron basket GABA cell; Dentate gyrus mossy cell; Dentate gyrus basket cell; Dentate gyrus hilar cell; Hippocampus CA1 basket cell; Hippocampus CA3 stratum oriens lacunosum-moleculare interneuron; Hippocampus CA1 bistratified cell; Hippocampus CA1 axo-axonic cell; Hippocampus CA3 axo-axonic cells;
Channel(s): I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I M; I h; I K,Ca; I_AHP;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Pattern Recognition; Temporal Pattern Generation; Spatio-temporal Activity Patterns; Brain Rhythms; Storage/recall;
Implementer(s): Cutsuridis, Vassilis [vcutsuridis at gmail.com];
Search NeuronDB for information about:  Dentate gyrus granule GLU cell; Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Hippocampus CA3 interneuron basket GABA cell; GabaA; AMPA; NMDA; I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I M; I h; I K,Ca; I_AHP;
/
CutsuridisPoirazi2015
Results
Weights
readme.html
ANsyn.mod *
bgka.mod *
borgkm.mod *
burststim.mod
cacumm.mod *
cad.mod
cadiv.mod *
cagk.mod
cagk2.mod
cagk3.mod
cal.mod *
cal1.mod
cal2.mod
calH.mod *
can2.mod *
can3.mod
car.mod *
cat.mod *
cat2.mod
cat3.mod
ccanl.mod *
distr.mod *
gskch.mod *
h.mod *
h2.mod
hha_old.mod *
hha2.mod *
hNa.mod *
hyperde3.mod *
IA.mod *
ichan2.mod *
Ih.mod *
kad.mod *
kahp.mod *
KahpM95.mod *
kap.mod *
kaprox.mod
Kaxon.mod *
kca.mod *
kd.mod *
Kdend.mod *
kdr.mod *
kdrca1.mod *
km.mod *
km2.mod
Ksoma.mod *
LcaMig.mod *
my_exp2syn.mod *
na3n.mod *
Naaxon.mod *
Nadend.mod *
nahh.mod *
Nasoma.mod *
naxn.mod *
nca.mod *
nmda.mod *
regn_stim.mod *
somacar.mod *
BasketCell.hoc
burst_cell.hoc
CA1AAC.hoc
CA1BC.hoc
CA1BSC.hoc
CA1OLM.hoc
CA1PC.hoc
CA3AAC.hoc
CA3BC.hoc
CA3BSC.hoc
CA3OLM.hoc
CA3PC.hoc
GC.hoc
gui.ses
HC.hoc
MC.hoc
mosinit.hoc
network.hoc
OLM.hoc
ranstream.hoc *
rig.hoc
screenshot.png
stim_cell.hoc
                            
TITLE ichan2.mod  
 
COMMENT
konduktivitas valtozas hatasa- somaban 
ENDCOMMENT
 
UNITS {
        (mA) =(milliamp)
        (mV) =(millivolt)
        (uF) = (microfarad)
	(molar) = (1/liter)
	(nA) = (nanoamp)
	(mM) = (millimolar)
	(um) = (micron)
	FARADAY = 96520 (coul)
	R = 8.3134	(joule/degC)
}
 
? interface 
NEURON { 
SUFFIX ichan2 
USEION nat READ enat WRITE inat VALENCE 1
USEION kf READ ekf WRITE ikf  VALENCE 1
USEION ks READ eks WRITE iks  VALENCE 1
NONSPECIFIC_CURRENT il 
RANGE  gnat, gkf, gks
RANGE gnatbar, gkfbar, gksbar
RANGE gl, el
RANGE minf, mtau, hinf, htau, nfinf, nftau, inat, ikf, nsinf, nstau, iks
}
 
INDEPENDENT {t FROM 0 TO 100 WITH 100 (ms)}
 
PARAMETER {
        v (mV) 
        celsius = 6.3 (degC)
        dt (ms) 
        enat  (mV)
	gnatbar (mho/cm2)   
        ekf  (mV)
	gkfbar (mho/cm2)
        eks  (mV)
	gksbar (mho/cm2)
	gl (mho/cm2)    
 	el (mV)
}
 
STATE {
	m h nf ns
}
 
ASSIGNED {
         
        gnat (mho/cm2) 
        gkf (mho/cm2)
        gks (mho/cm2)

        inat (mA/cm2)
        ikf (mA/cm2)
        iks (mA/cm2)


	il (mA/cm2)

	minf hinf nfinf nsinf
 	mtau (ms) htau (ms) nftau (ms) nstau (ms)
	mexp hexp nfexp nsexp
} 

? currents
BREAKPOINT {
	SOLVE states
        gnat = gnatbar*m*m*m*h  
        inat = gnat*(v - enat)
        gkf = gkfbar*nf*nf*nf*nf
        ikf = gkf*(v-ekf)
        gks = gksbar*ns*ns*ns*ns
        iks = gks*(v-eks)

	il = gl*(v-el)
}
 
UNITSOFF
 
INITIAL {
	trates(v)
	
	m = minf
	h = hinf
      nf = nfinf
      ns = nsinf
	
	VERBATIM
	return;
	ENDVERBATIM
}

? states
PROCEDURE states() {	:Computes state variables m, h, and n 
        trates(v)	:      at the current v and dt.
        m = m + mexp*(minf-m)
        h = h + hexp*(hinf-h)
        nf = nf + nfexp*(nfinf-nf)
        ns = ns + nsexp*(nsinf-ns)
        VERBATIM
        return 0;
        ENDVERBATIM
}
 
LOCAL q10

? rates
PROCEDURE rates(v) {  :Computes rate and other constants at current v.
                      :Call once from HOC to initialize inf at resting v.
        LOCAL  alpha, beta, sum
        :q10 = 3^((celsius - 6.3)/10)
        q10 = 1		: make temperature independent (BPG)
                :"m" sodium activation system - act and inact cross at -40
	alpha = -0.3*vtrap((v+60-17),-5)
	beta = 0.3*vtrap((v+60-45),5)
	sum = alpha+beta        
	mtau = 1/sum      minf = alpha/sum
                :"h" sodium inactivation system
	alpha = 0.23/exp((v+60+5)/20)
	beta = 3.33/(1+exp((v+60-47.5)/-10))
	sum = alpha+beta
	htau = 1/sum 
        hinf = alpha/sum 
             :"ns" sKDR activation system
        alpha = -0.028*vtrap((v+65-35),-6)
	beta = 0.1056/exp((v+65-10)/40)
	sum = alpha+beta        
	nstau = 1/sum      nsinf = alpha/sum
            :"nf" fKDR activation system
        alpha = -0.07*vtrap((v+65-47),-6)
	beta = 0.264/exp((v+65-22)/40)
	sum = alpha+beta        
	nftau = 1/sum      nfinf = alpha/sum
	
}
 
PROCEDURE trates(v) {  :Computes rate and other constants at current v.
                      :Call once from HOC to initialize inf at resting v.
	LOCAL tinc
        TABLE minf, mexp, hinf, hexp, nfinf, nfexp, nsinf, nsexp, mtau, htau, nftau, nstau
	DEPEND dt, celsius FROM -100 TO 100 WITH 200
                           
	rates(v)	: not consistently executed from here if usetable_hh == 1
		: so don't expect the tau values to be tracking along with
		: the inf values in hoc

	       tinc = -dt * q10
        mexp = 1 - exp(tinc/mtau)
        hexp = 1 - exp(tinc/htau)
	nfexp = 1 - exp(tinc/nftau)
	nsexp = 1 - exp(tinc/nstau)
}
 
FUNCTION vtrap(x,y) {  :Traps for 0 in denominator of rate eqns.
        if (fabs(x/y) < 1e-6) {
                vtrap = y*(1 - x/y/2)
        }else{  
                vtrap = x/(exp(x/y) - 1)
        }
}
 
UNITSON