Interaction of leak and IMI conductance on the STG over broad temperature range (Stadele et al 2015)

 Download zip file 
Help downloading and running models
The ZIP file contains a Hodgkin-Huxley based circuit model and the simulation environment MadSim used to study the interaction of leak and IMI on the gastric mill network of the crab (Cancer borealis) as represented in (C. Städele, S. Heigele and W. Stein, 2015) MadSim, the simulation environment used for this study, is freeware and included in the package.
1 . Stein W, Straub O, Ausborn J, Mader W, Wolf H (2008) Motor pattern selection by combinatorial code of interneuronal pathways. J Comput Neurosci 25:543-61 [PubMed]
2 . Ausborn J, Stein W, Wolf H (2007) Frequency control of motor patterning by negative sensory feedback. J Neurosci 27:9319-28 [PubMed]
3 . Städele C, Heigele S, Stein W (2015) Neuromodulation to the Rescue: Compensation of Temperature-Induced Breakdown of Rhythmic Motor Patterns via Extrinsic Neuromodulatory Input. PLoS Biol 13:e1002265 [PubMed]
4 . Daur N, Diehl F, Mader W, Stein W (2012) The stomatogastric nervous system as a model for studying sensorimotor interactions in real-time closed-loop conditions. Front Comput Neurosci 6:13 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Stomatogastric ganglion;
Cell Type(s): Stomatogastric Ganglion (STG) Lateral Gastric (LG) cell;
Channel(s): I MI;
Gap Junctions:
Transmitter(s): CabTRP 1a;
Simulation Environment: MadSim;
Model Concept(s): Temporal Pattern Generation; Invertebrate; Neuromodulation;
Search NeuronDB for information about:  I MI; CabTRP 1a;
madSim 6.11
! bloss oinr.knl *
1 kanal.knl *
dialog texte de.txt
dialog texte en.txt
form parameter.txt
form parameter.xls * * *
gb-parameter.txt *
gb-parameter.xls * * * *
ioTabelle langsam.txt *
ioTabelle normal.txt *
ioTabelle.txt *
izhikevich-typen.txt *
izhikevich-typen.txt.orig *
meldung texte de.txt
meldung texte en.txt
meldung texte en.txt.bak
neuronParameter.xls * * *
reizFuerServerBetrieb kurz.txt *
reizFuerServerBetrieb original.txt *
reizFuerServerBetrieb.txt *
standardap 2000ms.TXT *
standardap 200ms.txt *
standardap original.TXT *
standardap.txt *
swim example.txt * * * *
tooltip texte de.txt
tooltip texte en.txt
tooltip texte en.txt.bak
userDef SWIM kanal original.txt *



	PURPOSE:	description of all parameters used in the file
	47 parameter


SWIM_NA_E		- equilibrium potential of sodium channel
SWIM_NA_G		- conductance of sodium channel
SWIM_Form_Alpha_M	- form parameter for gate variable m, alpha term
SWIM_AalphaM		- rate constant
SWIM_V0alphaM		- half maximum potential
SWIM_BalphaM		- step width
SWIM_Form_Beta_M        - form parameter for gate variable m, beta term
SWIM_AbetaM		- rate constant
SWIM_V0betaM		- half maximum potential
SWIM_BbetaM		- step width
SWIM_M_POWER		- power of gate variable m
SWIM_M_INITIAL		- initial value of gate variable m
SWIM_Form_Alpha_H	- form parameter for gate variable h, alpha term
SWIM_AalphaH		- rate constant
SWIM_V0alphaH		- half maximum potential
SWIM_BalphaH		- step width
SWIM_Form_Beta_H        - form parameter for gate variable h, beta term
SWIM_AbetaH		- substitudes complete linoid term
SWIM_V0betaH		- half maximum potential
SWIM_BbetaH		- step width
SWIM_H_POWER		- power of gate variable h
SWIM_H_INITIAL		- initial value of gate variable h
SWIM_K_E		- equilibrium potential of potassium channel
SWIM_K_G		- conductance of potassium channel
SWIM_Form_Alpha_N	- form parameter for gate variable n, alpha term
SWIM_AalphaN		- rate constant
SWIM_V0alphaN		- half maximum potential
SWIM_BalphaN		- step width
SWIM_Form_Beta_N        - form parameter for gate variable n, beta term
SWIM_AbetaN		- rate constant
SWIM_V0betaN		- half maximum potential
SWIM_BbetaN		- step width
SWIM_N_POWER		- power of gate variable n
SWIM_N_INITIAL		- initial value of gate variable n
SWIM_CA_E		- equilibrium potential of calcium channel
SWIM_CA_G		- conductance of calcium channel
SWIM_Form_Alpha_C	- form parameter for gate variable c, alpha term
SWIM_AalphaC		- rate constant
SWIM_V0alphaC		- half maximum potential
SWIM_BalphaC		- step width
SWIM_Form_Beta_C        - form parameter for gate variable c, beta term
SWIM_AbetaC		- rate constant
SWIM_V0betaC		- half maximum potential
SWIM_BbetaC		- step width
SWIM_C_POWER		- power of gate variable c
SWIM_C_INITIAL		- initial value of gate variable c
SWIM_SPIKE_THRESHOLD	- spike threshold, used only for spike identification