Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)

 Download zip file 
Help downloading and running models
Accession:185858
"Neuronal persistent activity has been primarily assessed in terms of electrical mechanisms, without attention to the complex array of molecular events that also control cell excitability. We developed a multiscale neocortical model proceeding from the molecular to the network level to assess the contributions of calcium regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in providing additional and complementary support of continuing activation in the network. ..."
Reference:
1 . Neymotin SA, McDougal RA, Bulanova AS, Zeki M, Lakatos P, Terman D, Hines ML, Lytton WW (2016) Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex. Neuroscience 316:344-66 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell; Synapse; Channel/Receptor; Molecular Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; Neocortex V1 interneuron basket PV GABA cell; Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron; Neocortex layer 2-3 interneuron; Neocortex layer 5 interneuron; Neocortex layer 6a interneuron;
Channel(s): I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca; I CAN; I Calcium; I_AHP; I_KD; Ca pump;
Gap Junctions:
Receptor(s): mGluR1; GabaA; GabaB; AMPA; NMDA; mGluR; Glutamate; Gaba; IP3;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Ion Channel Kinetics; Oscillations; Spatio-temporal Activity Patterns; Signaling pathways; Working memory; Attractor Neural Network; Calcium dynamics; Laminar Connectivity; G-protein coupled; Rebound firing; Brain Rhythms; Dendritic Bistability; Reaction-diffusion; Beta oscillations; Persistent activity; Multiscale;
Implementer(s): Neymotin, Sam [Samuel.Neymotin at nki.rfmh.org]; McDougal, Robert [robert.mcdougal at yale.edu];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; Neocortex V1 interneuron basket PV GABA cell; mGluR1; GabaA; GabaB; AMPA; NMDA; mGluR; Glutamate; Gaba; IP3; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca; I CAN; I Calcium; I_AHP; I_KD; Ca pump; Gaba; Glutamate;
/
CaHDemo
readme.html
cagk.mod
cal.mod *
calts.mod *
can.mod *
cat.mod *
gabab.mod *
IC.mod *
icalts.mod *
Ih.mod
ihlts.mod *
IKM.mod *
kap.mod
kcalts.mod *
kdmc.mod
kdr.mod
kdrbwb.mod
km.mod *
mglur.mod *
misc.mod
MyExp2SynBB.mod *
MyExp2SynNMDABB.mod
nafbwb.mod
nax.mod
vecst.mod *
aux_fun.inc *
conf.py
declist.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
geom.py
ghk.inc *
grvec.hoc
init.hoc
labels.hoc
labels.py *
local.hoc *
misc.h
mpisim.py
netcfg.cfg
nqs.hoc
nqs.py
nrnoc.hoc *
onepyr.cfg
onepyr.py
pyinit.py *
python.hoc *
pywrap.hoc *
screenshot.png
screenshot1.png
simctrl.hoc *
simdat.py
syncode.hoc *
xgetargs.hoc *
                            
TITLE nax
: Na current for axon. No slow inact.
: M.Migliore Jul. 1997
: added sh to account for higher threshold M.Migliore, Apr.2002
: thread-safe 2010-05-31 Ben Suter
: 2010-11-07 Ben Suter reformatting, renaming thegna to g, setting sh = 0 (was 8 mV)
:
: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
: Copyright 2011, Benjamin Suter (for changes only)
: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::


NEURON {
    SUFFIX nax
    USEION na READ ena WRITE ina
    RANGE  gbar, sh
:   GLOBAL minf, hinf, mtau, htau,thinf, qinf, Rb, Rg, qg
}

PARAMETER {
    v                   (mV)
    celsius             (degC)
    ena                 (mV)        : must be explicitly def. in hoc

    sh      = 0         (mV)
    gbar    = 0.010     (mho/cm2)

    tha     = -30       (mV)        : v 1/2 for act
    qa      = 7.2       (mV)        : act slope (4.5)
    Ra      = 0.4       (/ms)       : open (v)
    Rb      = 0.124     (/ms)       : close (v)

    thi1    = -45       (mV)        : v 1/2 for inact
    thi2    = -45       (mV)        : v 1/2 for inact
    qd      = 1.5       (mV)        : inact tau slope
    qg      = 1.5       (mV)
    mmin    = 0.02
    hmin    = 0.5
    q10     = 2
    Rg      = 0.01      (/ms)       : inact recov (v)
    Rd      = 0.03      (/ms)       : inact (v)

    thinf   = -50       (mV)        : inact inf slope
    qinf    = 4         (mV)        : inact inf slope
}


UNITS {
    (mA) = (milliamp)
    (mV) = (millivolt)
    (pS) = (picosiemens)
    (um) = (micron)
}

ASSIGNED {
    ina         (mA/cm2)
    g           (mho/cm2)
    minf
    hinf
    mtau        (ms)
    htau        (ms)
}

STATE { m h}

BREAKPOINT {
    SOLVE states METHOD cnexp
    g = gbar*m*m*m*h
    ina = g * (v - ena)
}

INITIAL {
    trates(v,sh)
    m = minf
    h = hinf
}

DERIVATIVE states {
    trates(v,sh)
    m' = (minf-m)/mtau
    h' = (hinf-h)/htau
}

PROCEDURE trates(vm,sh2) {
    LOCAL  a, b, qt
    qt = q10^((celsius-24)/10)

    a = trap0(vm,tha+sh2,Ra,qa)
    b = trap0(-vm,-tha-sh2,Rb,qa)
    mtau = 1/(a+b)/qt
    if (mtau<mmin) {
        mtau = mmin
    }
    minf = a/(a+b)

    a = trap0(vm,thi1+sh2,Rd,qd)
    b = trap0(-vm,-thi2-sh2,Rg,qg)
    htau =  1/(a+b)/qt
    if (htau<hmin) {
        htau = hmin
    }
    hinf = 1/(1+exp((vm-thinf-sh2)/qinf))
}

FUNCTION trap0(v,th,a,q) {
    if (fabs(v-th) > 1e-6) {
        trap0 = a * (v - th) / (1 - exp(-(v - th)/q))
    } else {
        trap0 = a * q
    }
}