Layer V pyramidal cell model with reduced morphology (Mäki-Marttunen et al 2018)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:187474
" ... In this work, we develop and apply an automated, stepwise method for fitting a neuron model to data with fine spatial resolution, such as that achievable with voltage sensitive dyes (VSDs) and Ca2+ imaging. ... We apply our method to simulated data from layer 5 pyramidal cells (L5PCs) and construct a model with reduced neuronal morphology. We connect the reduced-morphology neurons into a network and validate against simulated data from a high-resolution L5PC network model. ..."
Reference:
1 . Hay E, Hill S, Schürmann F, Markram H, Segev I (2011) Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS Comput Biol 7:e1002107 [PubMed]
2 . Hay E, Segev I (2015) Dendritic Excitability and Gain Control in Recurrent Cortical Microcircuits. Cereb Cortex 25:3561-71 [PubMed]
3 . Mäki-Marttunen T, Halnes G, Devor A, Metzner C, Dale AM, Andreassen OA, Einevoll GT (2018) A stepwise neuron model fitting procedure designed for recordings with high spatial resolution: Application to layer 5 pyramidal cells. J Neurosci Methods 293:264-283 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I Calcium; I A, slow;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; NEURON (web link to model); Python; NeuroML;
Model Concept(s):
Implementer(s): Maki-Marttunen, Tuomo [tuomomm at uio.no]; Metzner, Christoph [c.metzner at herts.ac.uk];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I Calcium; I A, slow;
/
reducedhaymodel
network
models
README.html
Ca_HVA.mod *
Ca_LVAst.mod *
CaDynamics_E2.mod *
Ih.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
Nap_Et2.mod *
NaTa_t.mod *
ProbAMPANMDA2.mod
ProbAMPANMDA2group.mod
ProbAMPANMDA2groupdet.mod
ProbUDFsyn2.mod *
ProbUDFsyn2group.mod
ProbUDFsyn2groupdet.mod
SK_E2.mod *
SKv3_1.mod *
approxhaynetstuff.py
approxhaynetstuff_nonparallel.py
calculate_spike_trains.py
drawcumfr.py
mytools.py
pars_withmids_combfs_final.sav *
screenshot.png
simseedburst_func_nonparallel_nonadaptive_allions.py
                            
:Comment :
:Reference : :		Characterization of a Shaw-related potassium channel family in rat brain, The EMBO Journal, vol.11, no.7,2473-2486 (1992)

NEURON	{
	SUFFIX SKv3_1
	USEION k READ ek WRITE ik
	RANGE gSKv3_1bar, gSKv3_1, ik, offma, offmt, sloma, slomt, taummax
}

UNITS	{
	(S) = (siemens)
	(mV) = (millivolt)
	(mA) = (milliamp)
}

PARAMETER	{
	gSKv3_1bar = 0.00001 (S/cm2) 
	offma = 18.7 (mV)
	offmt = -46.56 (mV)
	sloma = 9.7 (mV)
	slomt = 44.14 (mV)
	taummax = 4.0 (ms)
}

ASSIGNED	{
	v	(mV)
	ek	(mV)
	ik	(mA/cm2)
	gSKv3_1	(S/cm2)
	mInf
	mTau
}

STATE	{ 
	m
}

BREAKPOINT	{
	SOLVE states METHOD cnexp
	gSKv3_1 = gSKv3_1bar*m
	ik = gSKv3_1*(v-ek)
}

DERIVATIVE states	{
	rates()
	m' = (mInf-m)/mTau
}

INITIAL{
	rates()
	m = mInf
}

PROCEDURE rates(){
	UNITSOFF
		mInf =  1/(1+exp((offma - v)/sloma))
		mTau =  taummax/(1+exp((offmt-v)/slomt))
	UNITSON
}