Functional properties of dendritic gap junctions in Cerebellar Golgi cells (Szoboszlay et al. 2016)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:189186
" ... We investigated the properties of gap junctions in cerebellar interneurons by combining paired somato-somatic and somato-dendritic recordings, anatomical reconstructions, immunohistochemistry, electron microscopy, and modeling. By fitting detailed compartmental models of Golgi cells to their somato-dendritic voltage responses, we determined their passive electrical properties and the mean gap junction conductance (0.9 nS). ..."
Reference:
1 . Szoboszlay M, Lorincz A, Lanore F, Vervaeke K, Silver RA, Nusser Z (2016) Functional Properties of Dendritic Gap Junctions in Cerebellar Golgi Cells. Neuron 90:1043-56 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Cerebellum golgi cell;
Channel(s):
Gap Junctions: Gap junctions;
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; neuroConstruct;
Model Concept(s):
Implementer(s): Szoboszlay, M [szoboszlay.miklos at koki.mta.hu];
/
Golgi
01_Soma-dendritic_recordings
01_Control
140311-C1
syncytium
num3
gapCond.mod *
biophys.hoc *
cellCheck.hoc *
fitting.ses
fitting.ses.fd1 *
fitting.ses.ft1
init.hoc *
init_auto_fitting.hoc *
init_fitting.hoc *
morphology_140311_C1.hoc *
nCtools.hoc *
Passive_GoC_membrane_kinetics.hoc
processes.hoc *
                            
{load_file("nrngui.hoc")}
objectvar save_window_, rvp_
objectvar scene_vector_[5]
objectvar ocbox_, ocbox_list_, scene_, scene_list_
{ocbox_list_ = new List()  scene_list_ = new List()}
{pwman_place(0,0,0)}

//Begin MulRunFitter[0]
{
load_file("mulfit.hoc", "MulRunFitter")
}
{
ocbox_ = new MulRunFitter(1)
}
{object_push(ocbox_)}
{
version(6)
ranfac = 2
fspec = new File("fitting.ses.ft1")
fdat = new File("fitting.ses.fd1")
read_data()
build()
}
opt.set_optimizer("MulfitPraxWrap")
{object_push(opt.optimizer)}
{
nstep = 6
}
{object_pop()}
{p.gengui(1, 974, 66, 293.4, 334.8)}
{p.showargs(7, 219, 291.6, 279)}
{optrestore(1632, 655, 291.6, 423)}
{object_pop()}
{
ocbox_.map("MulRunFitter[0]", 403, 138, 357.3, 433.8)
}
objref ocbox_
//End MulRunFitter[0]

{
save_window_ = new Graph(0)
save_window_.size(0,720,-1,71)
scene_vector_[4] = save_window_
{save_window_.view(0, -1, 720, 72, 608, 370, 421.2, 314.2)}
graphList[0].append(save_window_)
save_window_.save_name("graphList[0].")
save_window_.addexpr("morphology_140311_C1[0].soma.v(0.5)", 1, 1, 0.8, 0.9, 2)
save_window_.addexpr("morphology_140311_C1[0].dend_28.v(0.985)", 2, 1, 0.8, 0.9, 2)
}
objectvar scene_vector_[1]
{doNotify()}