Advanced search
User account
Login
Register
Find models by
Model name
First author
Each author
Find models for
Brain region
Concept
Find models of
Realistic Microcircuits
Connectionist Networks
Inverse stochastic resonance of cerebellar Purkinje cell (Buchin et al. 2016)
 
Download zip file
Help downloading and running models
Model Information
Model File
Accession:
206364
This code shows the simulations of the adaptive exponential integrate-and-fire model (http://www.scholarpedia.org/article/Adaptive_exponential_integrate-and-fire_model) at different stimulus conditions. The parameters of the model were tuned to the Purkinje cell of cerebellum to reproduce the inhibiion of these cells by noisy current injections. Similar experimental protocols were also applied to the detailed biophysical model of Purkinje cells, de Shutter & Bower (1994) model. The repository also includes the XPPaut version of the model with the corresponding bifurcation analysis.
Reference:
1 .
Buchin A, Rieubland S, Häusser M, Gutkin BS, Roth A (2016) Inverse Stochastic Resonance in Cerebellar Purkinje Cells.
PLoS Comput Biol
12
:e1005000
[
PubMed
]
Citations
Citation Browser
Model Information
(Click on a link to find other models with that property)
Model Type:
Synapse;
Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cerebellum;
Cell Type(s):
Cerebellum Purkinje GABA cell;
Abstract integrate-and-fire leaky neuron;
Abstract integrate-and-fire adaptive exponential (AdEx) neuron;
Channel(s):
Gap Junctions:
Receptor(s):
Gaba;
Glutamate;
Gene(s):
Transmitter(s):
Glutamate;
Gaba;
Simulation Environment:
MATLAB;
NEURON;
XPPAUT;
Model Concept(s):
Information transfer;
Activity Patterns;
Synaptic noise;
Oscillations;
Implementer(s):
Roth, Arnd ;
Buchin, Anatoly [anat.buchin at gmail.com];
Search NeuronDB
for information about:
Cerebellum Purkinje GABA cell
;
Glutamate
;
Gaba
;
Gaba
;
Glutamate
;
/
BuchinEtAl2016ISR
.git
deShutter-Bower
XPP
README.md
aeif.m
dendrite.m
dendritenodendrite.m
FI.m
hist_v.m
hist2.m
K.m
*
Other models using K.m:
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
Subiculum network model with dynamic chloride/potassium homeostasis (Buchin et al 2016)
matlabserver.m
newaEIF_parameters.xls
nodendrite.m
par.txt
parsave.m
psth.m
psthhold.m
psthprob.m
psthprobnew.m
psthsigma.m
ramp.m
ramp_test.m
ramp2 (rough method).m
ramp2.m
sevencells.m
sigma_opt.m
SNRprocessing.m
test_orn.m
test_orn_par.m
test_prob.m
test_prob_par.m
trajectory.m
trajectory_increase_noise.fig
trajectory_increase_noise.jpg
trajectory_increase_noise.m
trajectory_rand_noise.eps
trajectory_rand_noise.fig
trajectory_rand_noise.jpg
trajectory_rand_noise.m
trajectory_rand_noise.png
v1-v2.mw
File not selected
<- Select file from this column.