Mechanisms of fast rhythmic bursting in a layer 2/3 cortical neuron (Traub et al 2003)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:20756
This simulation is based on the reference paper listed below. This port was made by Roger D Traub and Maciej T Lazarewicz (mlazarew at seas.upenn.edu) Thanks to Ashlen P Reid for help with porting a morphology of the cell.
Reference:
1 . Traub RD, Buhl EH, Gloveli T, Whittington MA (2003) Fast rhythmic bursting can be induced in layer 2/3 cortical neurons by enhancing persistent Na+ conductance or by blocking BK channels. J Neurophysiol 89:909-21 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L2/3 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I h; I K,Ca; I Sodium; I Calcium; I Potassium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Bursting; Active Dendrites; Detailed Neuronal Models; Axonal Action Potentials; Calcium dynamics;
Implementer(s): Lazarewicz, Maciej [mlazarew at gmu.edu]; Traub, Roger D [rtraub at us.ibm.com];
Search NeuronDB for information about:  Neocortex L2/3 pyramidal GLU cell; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I h; I K,Ca; I Sodium; I Calcium; I Potassium;
TITLE Anomalous rectifier current for RD Traub, J Neurophysiol 89:909-921, 2003

COMMENT

	Implemented by Maciej Lazarewicz 2003 (mlazarew@seas.upenn.edu)

ENDCOMMENT

INDEPENDENT { t FROM 0 TO 1 WITH 1 (ms) }

UNITS { 
	(mV) = (millivolt) 
	(mA) = (milliamp) 
} 
NEURON { 
	SUFFIX ar
	NONSPECIFIC_CURRENT i
	RANGE gbar, i
}
PARAMETER { 
	gbar = 0.0 	(mho/cm2)
	v		(mV) 
	erev = -35	(mV)  
} 
ASSIGNED { 
	i 		(mA/cm2) 
	minf 		(1)
	mtau 		(ms) 
} 
STATE {
	m
}
BREAKPOINT { 
	SOLVE states METHOD cnexp
	i = gbar * m * ( v - erev ) 
} 
INITIAL { 
	settables(v) 
	m = minf
	m = 0.25
} 
DERIVATIVE states { 
	settables(v) 
	m' = ( minf - m ) / mtau 
}

UNITSOFF 
PROCEDURE settables(v) { 
	TABLE minf, mtau FROM -120 TO 40 WITH 641
	minf  = 1 / ( 1 + exp( ( v + 75 ) / 5.5 ) )
	mtau = 1 / ( exp( -14.6 - 0.086 * v ) + exp( -1.87 + 0.07 * v ) )
}
UNITSON