Regulation of motoneuron excitability by KCNQ/Kv7 modulators (Lombardo & Harrington 2016)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:217882
" ... Computer simulations confirmed that pharmacological enhancement of KCNQ/Kv7 channel (M current) activity decreases excitability and also suggested that the effects of inhibition of KCNQ/Kv7 channels on the excitability of spinal MNs do not depend on a direct effect in these neurons but likely on spinal cord synaptic partners. These results indicate that KCNQ/Kv7 channels have a fundamental role in the modulation of the excitability of spinal MNs acting both in these neurons and in their local presynaptic partners. ..."
Reference:
1 . Lombardo J, Harrington MA (2016) Nonreciprocal mechanisms in up- and downregulation of spinal motoneuron excitability by modulators of KCNQ/Kv7 channels. J Neurophysiol 116:2114-2124 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Spinal motoneuron;
Cell Type(s): Spinal cord lumbar motor neuron alpha ACh cell;
Channel(s): I Potassium; I K; I Na,t; I M;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Axonal Action Potentials;
Implementer(s): Lombardo, Joseph [josslomb at gmail.com];
Search NeuronDB for information about:  Spinal cord lumbar motor neuron alpha ACh cell; I Na,t; I K; I M; I Potassium;
/
LombardoHarrington2016
readme.html
Gfluctdv.mod *
ghchan.mod *
kca2.mod *
kdrRL.mod *
Km.mod *
kv1_gp.mod
L_Ca.mod *
mAHP.mod *
na3n.mod
na3rp.mod *
naps.mod *
napsi.mod *
buttons.png
ctrl.png
FR3cablepas.hoc
FRMot3dendNaHH.hoc
gKm0.png
GraphicsKmModulators.hoc
ModifiedFRMotoneuron.hoc
mosinit.hoc
retigabine.png
standard_0.hoc
Tools.ses
XE991.png
                            
soma.diam = 45.0
soma.L = 45.0
soma.g_pas = 0.00125
soma.e_pas = -72.0
soma.gbar_na3rp = 0.12
soma.gbar_naps = 0.00096
soma.sh_na3rp = 9.0
soma.sh_naps = 19.0
soma.ar_na3rp = 1.0
soma.ar_naps = 1.0
soma.gMax_kdrRL = 0.1
soma.gcamax_mAHP = 8e-06
soma.gkcamax_mAHP = 0.012
soma.taur_mAHP = 70.0
soma.ghbar_gh = 9e-05
soma.half_gh = -75.0
is.L = 50.0
is.diam = 4.5327
is.g_pas = 0.001
is.e_pas = -72.0
is.gbar_na3rp = 0.44
is.gbar_naps = 0.00704
is.sh_na3rp = 1.0
is.sh_naps = 11.0
is.ar_na3rp = 1.0
is.ar_naps = 1.0
is.gMax_kdrRL = 0.4
axonhillock.nseg = 5.0
axonhillock.diam(0:1) = 4.5327:13.32433
axonhillock.g_pas = 0.001
axonhillock.e_pas = -72.0
axonhillock.gbar_na3rp = 0.44
axonhillock.gbar_naps = 0.00704
axonhillock.sh_na3rp = 1.0
axonhillock.sh_naps = 11.0
axonhillock.ar_na3rp = 1.0
axonhillock.ar_naps = 1.0
axonhillock.gMax_kdrRL = 0.4
forsec dend{
nseg = 10.0
L = 4021.333
diam(0:0.2) = 16.827:17.788
diam(0.2:1) = 17.788:0.0
g_pas = 5e-05
e_pas = -72.0
gbar_na3rp = 0.00075
gbar_naps = 1.2e-05
sh_na3rp = 9.0
sh_naps = 19.0
ar_na3rp = 1.0
ar_naps = 1.0
gMax_kdrRL(0:0.04) = 0.08:0.08
gMax_kdrRL(0.04:1) = 0.00033:0.00033
gcabar_L_Ca = 0.0
g_kca2(0:0.2) = 0.0:0.0
g_kca2(0.2:0.5) = 0.00018:0.00018
g_kca2(0.5:1) = 0.0:0.0
depth2_kca2 = 200.0
taur2_kca2 = 120.0
gcamax_mAHP(0:0.1) = 8e-06:8e-06
gcamax_mAHP(0.1:1) = 0.0:0.0
gkcamax_mAHP(0:0.1) = 0.0012:0.0012
gkcamax_mAHP(0.1:1) = 0.0:0.0
taur_mAHP = 70.0
ghbar_gh = 9e-05
half_gh = -75.0
}
d1.gcabar_L_Ca(0.2:0.5) = 0.0001:0.0001
d2.gcabar_L_Ca(0.2:0.5) = 0.00014:0.00014
d3.gcabar_L_Ca(0.2:0.5) = 0.00019:0.00019
tmin_kdrRL = 0.8
taumax_kdrRL = 20.0
mVh_kdrRL = -21.0
mvhalfca_mAHP = -26.0
qinf_na3rp = 4.8
thinf_na3rp = -50.5
Rd_na3rp = 0.06
qd_na3rp = 1.3
qg_na3rp = 1.3
thi1_na3rp = -35.0
thi2_na3rp = -35.0
vslope_naps = 5.0
celsius = 37.0
theta_m_L_Ca = -40.0
V0 = -15.0