Hippocampus CA1 pyramidal model with Na channel exhibiting slow inactivation (Menon et al. 2009)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:222716
These NEURON simulations show the effect of prolonged inactivation of sodium channels on attenuation of trains of backpropagating action potentials (bAPs). The new sodium channel model is a Markov model derived using a state-mutating genetic algorithm, as described in the paper.
Reference:
1 . Menon V, Spruston N, Kath WL (2009) A state-mutating genetic algorithm to design ion-channel models. Proc Natl Acad Sci U S A 106:16829-34 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I A; I K; I Sodium; I Na, slow inactivation;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potentials; Ion Channel Kinetics; Markov-type model;
Implementer(s): Menon, Vilas [vilasmenon2008 at u dot northwestern dot edu];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; I A; I K; I Sodium; I Na, slow inactivation;
load_file("nrngui.hoc")

xpanel("choose a simulation")
  xlabel("Choose a simulation and then press Init&Run")
  xlabel("Quit and restart between runs")
  xbutton("Activity-dependent backpropagation of a train of action potentials (bAPs)","load_file(\"ri06_runAPtrain.hoc\")")
  xbutton("Suppression of dendritic spike generation by local depolarization","load_file(\"ri06_runsyn.hoc\")")
  xbutton("Quit","quit()")
xpanel()