Hippocampus CA1 pyramidal model with Na channel exhibiting slow inactivation (Menon et al. 2009)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:222716
These NEURON simulations show the effect of prolonged inactivation of sodium channels on attenuation of trains of backpropagating action potentials (bAPs). The new sodium channel model is a Markov model derived using a state-mutating genetic algorithm, as described in the paper.
Reference:
1 . Menon V, Spruston N, Kath WL (2009) A state-mutating genetic algorithm to design ion-channel models. Proc Natl Acad Sci U S A 106:16829-34 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I A; I K; I Sodium; I Na, slow inactivation;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potentials; Ion Channel Kinetics; Markov-type model;
Implementer(s): Menon, Vilas [vilasmenon2008 at u dot northwestern dot edu];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; I A; I K; I Sodium; I Na, slow inactivation;
// Sets up all the graphs for the train of bAPs

//Panel with option to change percent of slow inactivating sodium conductance
xpanel("Na channel parameters")
xvalue("Fraction of distal slow Na","distslowfrac",1)
xpanel(0,75)

//Run control box
objref contrl
contrl = new VBox()
contrl.intercept(1)
nrncontrolmenu()
contrl.intercept(0)
contrl.map("Control",1,400,-1,-1)

//Voltage shape plot
objref shbox
shbox = new VBox()
shbox.intercept(1)
access somaA
objref sl 
sl = new SectionList()
sl.wholetree()
objref s
s = new PlotShape(sl)
s.colormap(12,1)
s.colormap(0,0,0,255)
s.colormap(1,0,85,255)
s.colormap(2,0,170,255)
s.colormap(3,0,255,255)
s.colormap(4,0,255,128)
s.colormap(5,0,255,0)
s.colormap(6,110,255,0) 
s.colormap(7,180,255,0)
s.colormap(8,255,255,0) 
s.colormap(9,255,170,0)
s.colormap(10,255,100,0)
s.colormap(11,255,0,0)
s.variable("v")
s.show(0)
s.exec_menu("Shape Plot")
s.scale(-70,40)
fast_flush_list.append(s)
shbox.intercept(0)
shbox.map("Shape",700,10,400,400)

//Voltage plot at soma
objref volts
volts = new VBox()
volts.intercept(1)
objref g
g = new Graph()
g.addvar("somaA.v(0.5)",1,0)
g.size(inittime,tstop,-70,20)
graphList[0].append(g)
g.save_name("graphList[0].")
volts.intercept(0)
volts.map("voltages",200,0,350,400)

//Voltage plot at intermediate dendrite
objref volts2
volts2 = new VBox()
volts2.intercept(1)
objref g2
g2 = new Graph()
g2.addvar("dendA5_011111111111.v(0.5)",2,0)
g2.size(inittime,tstop,-70,20)
graphList[0].append(g2)
g2.save_name("graphList[0].")
volts2.intercept(0)
volts2.map("voltages",300,0,350,400)

//Voltage plot at distal dendrite
objref volts3
volts3 = new VBox()
volts3.intercept(1)
objref g3
g3 = new Graph()
g3.addvar("dendA5_011111111111111.v(0.5)",2,0)
g3.size(inittime,tstop,-70,20)
graphList[0].append(g3)
g3.save_name("graphList[0].")
volts3.intercept(0)
volts3.map("voltages",500,0,350,400)