Interneuron Specific 3 Interneuron Model (Guet-McCreight et al, 2016)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:223031
In this paper we develop morphologically detailed multi-compartment models of Hippocampal CA1 interneuron specific 3 interneurons using cell current-clamp recordings and dendritic calcium imaging data. In doing so, we developed several variant models, as outlined in the associated README.html file.
Reference:
1 . Guet-McCreight A, Camiré O, Topolnik L, Skinner FK (2016) Using a Semi-Automated Strategy to Develop Multi-Compartment Models That Predict Biophysical Properties of Interneuron-Specific 3 (IS3) Cells in Hippocampus. eNeuro [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s):
Channel(s): I Na,t; I Na,p; I A;
Gap Junctions:
Receptor(s):
Gene(s): Kv3.1 KCNC1; Kv2.1 KCNB1;
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potentials; Active Dendrites; Activity Patterns; Depolarization block; Detailed Neuronal Models; Ion Channel Kinetics;
Implementer(s): Guet-McCreight, Alexandre [alexandre.guet.mccreight at mail.utoronto.ca];
Search NeuronDB for information about:  I Na,p; I Na,t; I A;
/
Guet-McCreightEtAl2016
SDprox2
IKa.mod *
ingauss.mod *
Ksoma.mod *
Nap.mod *
Nasoma.mod *
init.hoc
IS3_SDprox2_TopModel.hoc
                            
TITLE nap

NEURON {
	SUFFIX nap
	USEION na READ ena WRITE ina
	RANGE  gbar, thegna, sh
	GLOBAL minf, mtau 
	:, hinf, mtau, htau
}

PARAMETER {
	gbar = .0006   	(mho/cm2)
	sh = 0  (mV)
	eNa = 55 	(mV)		
	ena		(mV)            
	celsius (degC)
	v 		(mV)
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
} 

ASSIGNED {
	ina 		(mA/cm2)
	thegna		(mho/cm2)
	minf 	
	mtau (ms)
}
 

STATE { m }

UNITSOFF

BREAKPOINT {
    SOLVE states METHOD cnexp
	        		
	thegna =gbar*m       
	ina = thegna * (v - eNa)
	} 

INITIAL {
	mtau = 5
	minf = (1/(1+exp(-(v+51-sh)/5)))      	
	m=minf  
	
}

DERIVATIVE states {   
    
	mtau = 5
	minf = (1/(1+exp(-(v+51-sh)/5))) 	         	
	m' = (minf-m)/mtau
}



UNITSON