Pyramidal neurons with mutated SCN2A gene (Nav1.2) (Ben-Shalom et al 2017)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:223955
Model of pyramidal neurons that either hyper or hypo excitable due to SCN2A mutations. Mutations are taken from patients with ASD or Epilepsy
Reference:
1 . Ben-Shalom R, Keeshen CM, Berrios KN, An JY, Sanders SJ, Bender KJ (2017) Opposing Effects on NaV1.2 Function Underlie Differences Between SCN2A Variants Observed in Individuals With Autism Spectrum Disorder or Infantile Seizures. Biol Psychiatry 82:224-232 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,t; I Sodium; I K;
Gap Junctions:
Receptor(s):
Gene(s): Nav1.2 SCN2A;
Transmitter(s):
Simulation Environment: NEURON; MATLAB;
Model Concept(s): Epilepsy; Autism spectrum disorder;
Implementer(s): Ben-Shalom, Roy [rbenshalom at ucdavis.edu];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; I Na,t; I K; I Sodium;
/
SCN2A_ASD
Excitability
AdultE1211K
readme.txt *
Cad.mod *
CaH.mod *
CaT.mod *
charge.mod *
h.mod *
Kca.mod *
Kv.mod *
Kv1_axonal.mod *
Kv7.mod *
na8st.mod *
na8st1.mod *
nax8st.mod *
28_04_10_num19.hoc *
Cell parameters.hoc *
charge.hoc *
mosinit.hoc *
scn2aExps.hoc
                            
load_file("nrngui.hoc")
xopen("$(NEURONHOME)/lib/hoc/noload.hoc")
load_proc("nrnmainmenu")

xopen("28_04_10_num19.hoc")

xopen("Cell parameters.hoc")
xopen("charge.hoc")

parameters()
geom_nseg()
init_channels()

objref zz

zz = new Impedance()

func rn() { local rn
  init()  // make sure all changes to g, c, ri etc. have taken effect
  soma zz.loc(0.5)  // sets origin for impedance calculations to middle of soma
  zz.compute(0)  // DC input R
  soma { rn = zz.input(0.5) }  // rn is input R at middle of the soma
  return rn
}


t=5
tstop=580
steps_per_ms=40
dt=0.010		


proc init() {local saveDt, i

	finitialize(v_init)
	fcurrent()
	saveDt = dt
	dt = .5
	for i=1,500/dt fadvance()
	dt = saveDt


	init_channels()

	if (cvode.active()) {
		cvode.re_init()
	} else {
		fcurrent()
	}
	frecord_init()
}


load_file("all_28_04_10_num19.ses")



objref sl
sl = new SectionList()
sl.wholetree()

objref spbox
spbox = new VBox()
spbox.intercept(1)

objref sp
sp = new PlotShape(sl)
sp.show(0)

ncmap=13
vstep=0.0833
vlow=0
vhigh=vlow+(ncmap-1)*vstep
sp.colormap(ncmap,1)

i1=int(3*(ncmap-1)/8)
//print i1
for (i=0; i<=i1; i=i+1) {
	f=i/(3*(ncmap-1)/8)
	print i,f,0,255*f,255
	sp.colormap(i,0,255*f,255)
}
print " "
i2=int((ncmap-1)/2)
for (i=i1+1; i<=i2; i=i+1) {
	f=(i-3*(ncmap-1)/8)/((ncmap-1)/8)
	print i,f,0,255,255*(1-f)
	sp.colormap(i,0,255,255*(1-f))
}
print " "
i3=int(5*(ncmap-1)/8)
for (i=i2+1; i<=i3; i=i+1) {
	f=(i-(ncmap-1)/2)/((ncmap-1)/8)
	print i,f,255*f,255,0
	sp.colormap(i,255*f,255,0)
}
print " "
for (i=i3+1; i<=ncmap-1; i=i+1) {
	f=(i-5*(ncmap-1)/8)/(3*(ncmap-1)/8)
	print i,f,255,255*(1-f),0
	sp.colormap(i,255,255*(1-f),0)
} 

sp.variable("overl_charge_")
sp.exec_menu("Shape Plot")
//sp.view(-608.167, -740.999, 1548.33, 1812, 509, 84, 276, 323)
sp.scale(vlow,vhigh)

fast_flush_list.append(sp)
sp.save_name("fast_flush_list.")

spbox.intercept(0)
spbox.map("Shape plot",500,20,300,400)