CA1 pyr cell: Inhibitory modulation of spatial selectivity+phase precession (Grienberger et al 2017)

 Download zip file 
Help downloading and running models
Accession:225080
Spatially uniform synaptic inhibition enhances spatial selectivity and temporal coding in CA1 place cells by suppressing broad out-of-field excitation.
Reference:
1 . Grienberger C, Milstein AD, Bittner KC, Romani S, Magee JC (2017) Inhibitory suppression of heterogeneously tuned excitation enhances spatial coding in CA1 place cells. Nat Neurosci 20:417-426 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Realistic Network;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s):
Gap Junctions:
Receptor(s): NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s): Active Dendrites; Detailed Neuronal Models; Place cell/field; Synaptic Integration; Short-term Synaptic Plasticity; Spatial Navigation; Feature selectivity;
Implementer(s): Milstein, Aaron D. [aaronmil at stanford.edu];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; NMDA;
/
GrienbergerEtAl2017
morphologies
readme.txt
ampa_kin.mod *
exp2EPSC.mod
exp2EPSG.mod
exp2EPSG_NMDA.mod
gaba_a_kin.mod *
h.mod
kad.mod *
kap.mod *
kdr.mod *
km2.mod
nas.mod
nax.mod
nmda_kin2.mod
nmda_kin3.mod
nmda_kin5.mod *
pr.mod *
vecevent.mod *
batch_EPSP_attenuation.sh
batch_place_cell_r_inp.sh
batch_place_cell_record_i_syn.sh
batch_place_cell_single_compartment.sh
batch_place_cell_subtr_inh.sh
batch_place_cell_subtr_inh_shifted.sh
batch_place_cell_subtr_inh_vclamp.sh
batch_process_i_syn_files.sh
batch_rinp.sh
batch_spine_attenuation_ratio.sh
build_expected_EPSP_reference.sh
build_expected_EPSP_reference_controller.py
build_expected_EPSP_reference_engine.py
consolidate_i_syn_files.py
consolidate_tracked_spine_data.py
fit_parameter_exponential_distribution.py
function_lib.py
optimize_AMPA_KIN.py
optimize_dendritic_excitability_020416.py
optimize_GABA_A_KIN.py
optimize_NMDA_KIN2.py
parallel_branch_cooperativity.sh
parallel_branch_cooperativity_no_nmda.sh
parallel_clustered_branch_cooperativity_nmda_controller_110315.py
parallel_clustered_branch_cooperativity_nmda_engine_110315.py
parallel_EPSP_attenuation_controller.py
parallel_EPSP_attenuation_engine.py
parallel_EPSP_i_attenuation_controller.py
parallel_EPSP_i_attenuation_engine.py
parallel_expected_EPSP_controller.py
parallel_expected_EPSP_engine.py
parallel_optimize_branch_cooperativity.sh
parallel_optimize_branch_cooperativity_nmda_kin3_controller.py
parallel_optimize_branch_cooperativity_nmda_kin3_engine.py
parallel_optimize_EPSP_amp_controller.py
parallel_optimize_EPSP_amp_engine.py
parallel_optimize_pr.sh
parallel_optimize_pr_controller_020116.py
parallel_optimize_pr_engine_020116.py
parallel_rinp_controller.py
parallel_rinp_engine.py
parallel_spine_attenuation_ratio_controller.py
parallel_spine_attenuation_ratio_engine.py
plot_channel_distributions.py
plot_NMDAR_kinetics.py
plot_results.py
plot_spine_traces.py
plot_synaptic_conductance_facilitation.py
process_i_syn_files.py
record_bAP_attenuation.py
simulate_place_cell_no_precession.py
simulate_place_cell_single_compartment.py
simulate_place_cell_single_compartment_no_nmda.py
simulate_place_cell_subtr_inh.py
simulate_place_cell_subtr_inh_add_noise.py
simulate_place_cell_subtr_inh_add_noise_no_na.py
simulate_place_cell_subtr_inh_no_na.py
simulate_place_cell_subtr_inh_no_nmda_no_na.py
simulate_place_cell_subtr_inh_r_inp.py
simulate_place_cell_subtr_inh_rec_i_syn.py
simulate_place_cell_subtr_inh_shifted.py
simulate_place_cell_subtr_inh_silent.py
simulate_place_cell_subtr_inh_vclamp.py
specify_cells.py
                            
COMMENT
Two state kinetic scheme synapse described by rise time tau1,
and decay time constant tau2. The normalized peak condunductance is 1.
Decay time MUST be greater than rise time.

The solution of A->G->bath with rate constants 1/tau1 and 1/tau2 is
 A = a*exp(-t/tau1) and
 G = a*tau2/(tau2-tau1)*(-exp(-t/tau1) + exp(-t/tau2))
	where tau1 < tau2

If tau2-tau1 -> 0 then we have a alphasynapse.
and if tau1 -> 0 then we have just single exponential decay.

The factor is evaluated in the
initial block such that an event of weight 1 generates a
peak conductance of 1.

Because the solution is a sum of exponentials, the
coupled equations can be solved as a pair of independent equations
by the more efficient cnexp method.

ENDCOMMENT

NEURON {
	POINT_PROCESS Exp2EPSG
	RANGE tau1, tau2, e, gmax, i
	NONSPECIFIC_CURRENT i

	RANGE g
}

UNITS {
	(nA) = (nanoamp)
	(mV) = (millivolt)
	(uS) = (microsiemens)
}

PARAMETER {
	tau1=.1 (ms) <1e-9,1e9>
	tau2 = 10 (ms) <1e-9,1e9>
	e=0	(mV)
    gmax=1 (1)
}

ASSIGNED {
	v (mV)
	i (nA)
	g (uS)
	factor
}

STATE {
	A (uS)
	B (uS)
}

INITIAL {
	LOCAL tp
	if (tau1/tau2 > .9999) {
		tau1 = .9999*tau2
	}
	A = 0
	B = 0
	tp = (tau1*tau2)/(tau2 - tau1) * log(tau2/tau1)
	factor = -exp(-tp/tau1) + exp(-tp/tau2)
	factor = 1/factor
}

BREAKPOINT {
	SOLVE state METHOD cnexp
	g = B - A
	i = g*gmax*(v - e)
}

DERIVATIVE state {
	A' = -A/tau1
	B' = -B/tau2
}

NET_RECEIVE(weight (uS)) {
	A = A + weight*factor
	B = B + weight*factor
}