CA1 pyr cell: Inhibitory modulation of spatial selectivity+phase precession (Grienberger et al 2017)

 Download zip file 
Help downloading and running models
Accession:225080
Spatially uniform synaptic inhibition enhances spatial selectivity and temporal coding in CA1 place cells by suppressing broad out-of-field excitation.
Reference:
1 . Grienberger C, Milstein AD, Bittner KC, Romani S, Magee JC (2017) Inhibitory suppression of heterogeneously tuned excitation enhances spatial coding in CA1 place cells. Nat Neurosci 20:417-426 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Realistic Network;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s):
Gap Junctions:
Receptor(s): NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s): Active Dendrites; Detailed Neuronal Models; Place cell/field; Synaptic Integration; Short-term Synaptic Plasticity; Spatial Navigation; Feature selectivity;
Implementer(s): Milstein, Aaron D. [aaronmil at stanford.edu];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; NMDA;
/
GrienbergerEtAl2017
morphologies
readme.txt
ampa_kin.mod *
exp2EPSC.mod
exp2EPSG.mod
exp2EPSG_NMDA.mod
gaba_a_kin.mod *
h.mod
kad.mod *
kap.mod *
kdr.mod *
km2.mod
nas.mod
nax.mod
nmda_kin2.mod
nmda_kin3.mod
nmda_kin5.mod *
pr.mod *
vecevent.mod *
batch_EPSP_attenuation.sh
batch_place_cell_r_inp.sh
batch_place_cell_record_i_syn.sh
batch_place_cell_single_compartment.sh
batch_place_cell_subtr_inh.sh
batch_place_cell_subtr_inh_shifted.sh
batch_place_cell_subtr_inh_vclamp.sh
batch_process_i_syn_files.sh
batch_rinp.sh
batch_spine_attenuation_ratio.sh
build_expected_EPSP_reference.sh
build_expected_EPSP_reference_controller.py
build_expected_EPSP_reference_engine.py
consolidate_i_syn_files.py
consolidate_tracked_spine_data.py
fit_parameter_exponential_distribution.py
function_lib.py
optimize_AMPA_KIN.py
optimize_dendritic_excitability_020416.py
optimize_GABA_A_KIN.py
optimize_NMDA_KIN2.py
parallel_branch_cooperativity.sh
parallel_branch_cooperativity_no_nmda.sh
parallel_clustered_branch_cooperativity_nmda_controller_110315.py
parallel_clustered_branch_cooperativity_nmda_engine_110315.py
parallel_EPSP_attenuation_controller.py
parallel_EPSP_attenuation_engine.py
parallel_EPSP_i_attenuation_controller.py
parallel_EPSP_i_attenuation_engine.py
parallel_expected_EPSP_controller.py
parallel_expected_EPSP_engine.py
parallel_optimize_branch_cooperativity.sh
parallel_optimize_branch_cooperativity_nmda_kin3_controller.py
parallel_optimize_branch_cooperativity_nmda_kin3_engine.py
parallel_optimize_EPSP_amp_controller.py
parallel_optimize_EPSP_amp_engine.py
parallel_optimize_pr.sh
parallel_optimize_pr_controller_020116.py
parallel_optimize_pr_engine_020116.py
parallel_rinp_controller.py
parallel_rinp_engine.py
parallel_spine_attenuation_ratio_controller.py
parallel_spine_attenuation_ratio_engine.py
plot_channel_distributions.py
plot_NMDAR_kinetics.py
plot_results.py
plot_spine_traces.py
plot_synaptic_conductance_facilitation.py
process_i_syn_files.py
record_bAP_attenuation.py
simulate_place_cell_no_precession.py
simulate_place_cell_single_compartment.py
simulate_place_cell_single_compartment_no_nmda.py
simulate_place_cell_subtr_inh.py
simulate_place_cell_subtr_inh_add_noise.py
simulate_place_cell_subtr_inh_add_noise_no_na.py
simulate_place_cell_subtr_inh_no_na.py
simulate_place_cell_subtr_inh_no_nmda_no_na.py
simulate_place_cell_subtr_inh_r_inp.py
simulate_place_cell_subtr_inh_rec_i_syn.py
simulate_place_cell_subtr_inh_shifted.py
simulate_place_cell_subtr_inh_silent.py
simulate_place_cell_subtr_inh_vclamp.py
specify_cells.py
                            
__author__ = 'Aaron D. Milstein'
from ipyparallel import Client
from IPython.display import clear_output
from plot_results import *
import sys
import parallel_optimize_EPSP_amp_engine
"""
This simulation uses scipy.optimize to iterate through AMPA_KIN.gmax values to fit target EPSP amplitude at the soma.
Parallel version dynamically submits jobs to available cores.

Assumes a controller is already running in another process with:
ipcluster start -n num_cores
"""
filename_suffix = ' - AMPAR_scaling'
new_rec_filename = parallel_optimize_EPSP_amp_engine.mech_filename+filename_suffix

c = Client()
dv = c[:]
dv.clear()
dv.block = True
start_time = time.time()
dv.execute('from parallel_optimize_EPSP_amp_engine import *')
v = c.load_balanced_view()
map_result = v.map_async(parallel_optimize_EPSP_amp_engine.optimize_single_synapse,
                         range(len(parallel_optimize_EPSP_amp_engine.syn_list)))
while not map_result.ready():
    time.sleep(30)
    for stdout in [stdout for stdout in map_result.stdout if stdout][-len(c):]:
        lines = stdout.split('\n')
        if lines[-2]:
            print lines[-2]
    sys.stdout.flush()
    clear_output()
results = map_result.get()
print 'Parallel execution took:', time.time()-start_time, 's'
distances = {}
param_vals = {}
for result in results:
    if not result['sec_type'] in distances:
        distances[result['sec_type']] = []
        param_vals[result['sec_type']] = {}
for param_name in parallel_optimize_EPSP_amp_engine.param_names:
    for sec_type in param_vals:
        param_vals[sec_type][param_name] = []
for result in results:
    distances[result['sec_type']].append(result['distance'])
    for i, param_name in enumerate(parallel_optimize_EPSP_amp_engine.param_names):
        param_vals[result['sec_type']][param_name].append(result['result'][i])
with h5py.File(data_dir+new_rec_filename+'.hdf5', 'w') as f:
    f.attrs['syn_type'] = parallel_optimize_EPSP_amp_engine.syn_type
    for i, param_name in enumerate(parallel_optimize_EPSP_amp_engine.param_names):
        f.attrs[param_name] = parallel_optimize_EPSP_amp_engine.param_ylabels[i]
    for sec_type in distances:
        f.create_group(sec_type)
        f[sec_type].create_dataset('distances', compression='gzip', compression_opts=9, data=distances[sec_type])
        for param_name in param_vals[sec_type]:
            f[sec_type].create_dataset(param_name, compression='gzip', compression_opts=9,
                                       data=param_vals[sec_type][param_name])
plot_synaptic_parameter(new_rec_filename)