Theory and simulation of integrate-and-fire neurons driven by shot noise (Droste & Lindner 2017)

 Download zip file 
Help downloading and running models
Accession:228604
This archive contains source code for the paper "Exact analytical results for integrate-and-fire neurons driven by excitatory shot noise" by Droste and Lindner, 2017. Specifically, it contains a Python implementation of the analytical formulas derived in that paper (allowing to calculate firing rate, CV and stationary voltage distribution of general integrate-and-fire neurons driven by excitatory shot noise, as well as power spectrum and rate-response of leaky integrate-and-fire neurons with such input) and C++ code implementing a Monte-Carlo simulation to estimate these quantities. A sample Jupyter notebook to play around with the analytics is included, as are scripts to reproduce the figures from the paper.
Reference:
1 . Droste F, Lindner B (2017) Exact analytical results for integrate-and-fire neurons driven by excitatory shot noise J. Comp. Neurosci.
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type:
Brain Region(s)/Organism:
Cell Type(s): Abstract integrate-and-fire leaky neuron; Abstract theta neuron;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: C or C++ program; Python;
Model Concept(s):
Implementer(s): Droste, Felix [fedro at posteo.de];
/
shotnoise_analytics
param_scan
.git
branches
hooks
info
logs
objects
refs
config
description *
HEAD *
index
packed-refs
                            
[core]
	repositoryformatversion = 0
	filemode = true
	bare = false
	logallrefupdates = true
[remote "origin"]
	url = /home/fedro/projects/shotnoisepaper/param_scan
	fetch = +refs/heads/*:refs/remotes/origin/*
[branch "master"]
	remote = origin
	merge = refs/heads/master