Robust transmission in the inhibitory Purkinje Cell to Cerebellar Nuclei pathway (Abbasi et al 2017)

 Download zip file 
Help downloading and running models
Accession:229279

Reference:
1 . Abbasi S, Hudson AE, Maran SK, Cao Y, Abbasi A, Heck DH, Jaeger D (2017) Robust Transmission of Rate Coding in the Inhibitory Purkinje Cell to Cerebellar Nuclei Pathway in Awake Mice PLOS Computational Biology
2 . Steuber V, Schultheiss NW, Silver RA, De Schutter E, Jaeger D (2011) Determinants of synaptic integration and heterogeneity in rebound firing explored with data-driven models of deep cerebellar nucleus cells. J Comput Neurosci 30:633-58 [PubMed]
3 . Steuber V, Jaeger D (2013) Modeling the generation of output by the cerebellar nuclei. Neural Netw 47:112-9 [PubMed]
4 . Steuber V, De Schutter E, Jaeger D (2004) Passive models of neurons in the deep cerebellar nuclei: the effect of reconstruction errors Neurocomputing 58-60:563-568
5 . Luthman J, Hoebeek FE, Maex R, Davey N, Adams R, De Zeeuw CI, Steuber V (2011) STD-dependent and independent encoding of input irregularity as spike rate in a computational model of a cerebellar nucleus neuron. Cerebellum 10:667-82 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum deep nucleus neuron;
Channel(s): I h; I T low threshold; I L high threshold; I Na,p; I Na,t; I K,Ca; I K;
Gap Junctions:
Receptor(s): AMPA; NMDA; GabaA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: GENESIS;
Model Concept(s): Synaptic Integration;
Implementer(s): Jaeger, Dieter [djaeger at emory.edu];
Search NeuronDB for information about:  GabaA; AMPA; NMDA; I Na,p; I Na,t; I L high threshold; I T low threshold; I K; I h; I K,Ca; Gaba; Glutamate;
function [m,jsd]=jackknife(x)
% Compute jackknife estimates of the mean and standard deviation of input data x
% Usage: [m,jsd]=jackknife(x)
% 
% Inputs:
% x : data in the form samples x trials
%
% Outputs:
% m : estimate of the mean (across trials)
% jsd: jackknife estimate of the standard deviation (across trials)

[N,C]=size(x);
if C==1; error('Need multiple trials'); end;
m=mean(x,2);
theta=zeros(N,C);
for tr=1:C;
    i=setdiff((1:C),tr); % drop 1 trial
    y=sum(x(:,i),2)/(C-1); % mean over remaining trials
    theta(:,tr)=C*m-(C-1)*y; % pseudo values
%     yy(:,tr)=y;
end;
jm=mean(theta,2);
jm=repmat(jm,[1 C]);
% jm2=mean(yy,2);
% jm2=repmat(jm2,[1 C]);
jsd=sqrt(sum((theta-jm).^2,2)/(C*(C-1)));
% jsd2=sqrt((C-1)*sum((yy-jm2).^2,2)/C);
% jsd
% jsd2