A detailed Purkinje cell model (Masoli et al 2015)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:229585
The Purkinje cell is one of the most complex type of neuron in the central nervous system and is well known for its massive dendritic tree. The initiation of the action potential was theorized to be due to the high calcium channels presence in the dendritic tree but, in the last years, this idea was revised. In fact, the Axon Initial Segment, the first section of the axon was seen to be critical for the spontaneous generation of action potentials. The model reproduces the behaviours linked to the presence of this fundamental sections and the interplay with the other parts of the neuron.
Reference:
1 . Masoli S, Solinas S, D'Angelo E (2015) Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization. Front Cell Neurosci 9:47 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Axon;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum Purkinje GABA cell;
Channel(s): I Sodium; I Calcium; I Na,t; I K;
Gap Junctions:
Receptor(s):
Gene(s): Cav2.1 CACNA1A; Cav3.1 CACNA1G; Cav3.2 CACNA1H; Cav3.3 CACNA1I; Nav1.6 SCN8A; Kv1.1 KCNA1; Kv1.5 KCNA5; Kv3.3 KCNC3; Kv3.4 KCNC4; Kv4.3 KCND3; KCa1.1 KCNMA1; KCa2.2 KCNN2; KCa3.1 KCNN4; Kir2.1 KCNJ2; HCN1;
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s): Bursting; Detailed Neuronal Models; Action Potentials; Action Potential Initiation; Axonal Action Potentials;
Implementer(s): Masoli, Stefano [stefano.masoli at unipv.it]; Solinas, Sergio [solinas at unipv.it];
Search NeuronDB for information about:  Cerebellum Purkinje GABA cell; I Na,t; I K; I Sodium; I Calcium;
/
purkinjecell
mod_files
Cav2_1.mod *
Cav3_1.mod *
Cav3_2.mod *
Cav3_3.mod *
cdp5.mod *
HCN1_Angeloetal2007.mod *
Kca11.mod *
Kca22.mod *
Kca31.mod *
Kir23.mod *
Kv11.mod *
Kv15.mod *
Kv33.mod *
Kv34.mod *
Kv43.mod *
Leak.mod *
Nav16.mod *
                            
TITLE P-type calcium channel

COMMENT

Constructed from the recording data provided by Bruce Bean.
Reference: Swensen AM and Bean BP (2005) Robustness of burst firing in dissociated purkinje neurons with acute or long-term reductions in sodium conductance. J Neurosci 25:3509-20

Current Model Reference: Anwar H, Hong S, De Schutter E (2010) Controlling Ca2+-activated K+ channels with models of Ca2+ buffering in Purkinje cell. Cerebellum*

*Article available as Open Access

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/20981513


Written by Sungho Hong, Computational Neuroscience Unit, Okinawa Institute of Science and Technology, 2009.
Contact: Sungho Hong (shhong@oist.jp)

Suffix from newCaP to Cav2_1


ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
    SUFFIX Cav2_1
    USEION ca READ cai, cao WRITE ica
    RANGE pcabar, ica, gk, vhalfm, cvm, vshift, taum, minf
}

UNITS {
    (mV) = (millivolt)
    (mA) = (milliamp)
    (nA) = (nanoamp)
    (pA) = (picoamp)
    (S)  = (siemens)
    (nS) = (nanosiemens)
    (pS) = (picosiemens)
    (um) = (micron)
    (molar) = (1/liter)
    (mM) = (millimolar)     
}

CONSTANT {
    q10 = 3
    F = 9.6485e4 (coulombs)
    R = 8.3145 (joule/kelvin)
}

PARAMETER {
    v (mV)
    celsius (degC)

    cai (mM)
    cao (mM)

    vhalfm = -29.458 (mV)
    cvm = 8.429(mV)
    vhalfh = -11.039 (mV)
    cvh = 16.098 (mV)
    vshift = 0 (mV)

    pcabar = 2.2e-4 (cm/s)
}

ASSIGNED {
    qt
    ica (mA/cm2)
    minf
    taum (ms)
    gk (coulombs/cm3)
    T (kelvin)
    E (volt)
    zeta
}

STATE { m }

INITIAL {
    qt = q10^((celsius-23 (degC))/10 (degC))
    T = kelvinfkt( celsius )
    rates(v)
    m = minf
}

BREAKPOINT {
    SOLVE states METHOD cnexp
    
    ica = (1e3) * pcabar * m * m * m * gk
}

DERIVATIVE states {
    rates(v)
    m' = (minf-m)/taum
}

FUNCTION ghk( v (mV), ci (mM), co (mM), z )  (coulombs/cm3) { 
    E = (1e-3) * v
      zeta = (z*F*E)/(R*T)  
    
    if ( fabs(1-exp(-zeta)) < 1e-6 ) {
        ghk = (1e-6) * (z*F) * (ci - co*exp(-zeta)) * (1 + zeta/2)
    } else {
        ghk = (1e-6) * (z*zeta*F) * (ci - co*exp(-zeta)) / (1-exp(-zeta))
    }
}

PROCEDURE rates( v (mV) ) {

    minf = 1 / ( 1 + exp(-(v-vhalfm-vshift)/cvm) )

    taum = taumfkt(v-vshift)/qt
    
    gk = ghk(v-vshift, cai, cao, 2)
}


FUNCTION kelvinfkt( t (degC) )  (kelvin) {
    UNITSOFF
    kelvinfkt = 273.19 + t
    UNITSON
}

FUNCTION taumfkt( v (mV) ) (ms) {
    UNITSOFF
    if (v>=-40) {
        taumfkt = 0.2702 + 1.1622 * exp(-(v+26.798)*(v+26.798)/164.19)
    } else {
        taumfkt = 0.6923 * exp(v/1089.372)
    }
    UNITSON
}